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Abstract
The concept of Digital Twins (DTs) has been evolving to include cognitive ca-

pabilities, leading to the emergence of Cognitive Digital Twins (CDTs).

CDTs are digital representations of physical systems that are augmented with

cognitive capabilities to execute autonomous activities. They comprise a set of se-

mantically interlinked digital models related to linking and retrieving heterogeneous

data, as well as descriptive and simulation models. The CDT concept enhances

the cognition capabilities of DTs with semantic technologies, enabling them to be

more intelligent, comprehensive, and provide full lifecycle representation of complex

systems.

This paper explores the potential of CDTs in enhancing perturbation resilience

and maintenance. a super-Digital twin is realized that not only replicates the sys-

tem’s actions, but generates perturbations and anomalies to maintain and empower

the system’s security.

Keywords: Digital Twins; Cognitive Digital Twins ; Internet of Things; Re-

silience; Artificial Intelligence; Machine Learning; Deep Learning
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Résumé
Le concept de Digital Twins (DTs) a évolué pour inclure des capacités cognitives,

ce qui a conduit à l’émergence des Cognitive Digital Twins (CDTs). Les CDTs sont

des représentations numériques de systèmes physiques qui sont enrichies de capacités

cognitives pour exécuter des activités autonomes. Ils comprennent un ensemble de

modèles numériques sémantiquement interconnectés liés à la liaison et à la récupéra-

tion de données hétérogènes, ainsi que des modèles descriptifs et de simulation. Le

concept de CDT améliore les capacités cognitives des DTs grâce aux technologies

sémantiques, leur permettant d’être plus intelligents, exhaustifs et de fournir une

représentation du cycle de vie complet des systèmes complexes.

Ce document explore le potentiel des CDTs dans l’amélioration de la résilience

aux perturbations et de la maintenance. Un super-digital twin est réalisé, qui non

seulement reproduit les actions du système, mais génère des perturbations et des

anomalies pour maintenir et renforcer la sécurité du système. Le mémoire de mas-

ter examine les possibilités offertes par les CDTs pour améliorer la résilience aux

perturbations et la maintenance des systèmes complexes. Il propose également un

cadre de recherche pour déterminer quand et comment un digital twin doit être en-

richi de capacités cognitives. L’utilisation des CDTs dans les systèmes de fabrication

est également explorée.

Mots Clés: Jumeaux numériques ; Jumeaux numériques cognitifs ; Internet des

objets ; Résilience ; Intelligence artificielle ; Apprentissage automatique ; Appren-

tissage profond
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 ملخص 
 

La traduction est trop longue pour être enregistrée 

 لقد تطور مفهوم التوائم الرقمية ليشمل القدرات المعرفية ، مما أدى إلى ظهور التوائم الرقمية المعرفية.

 

لتنفيذ هي تمثيلات رقمية للأنظمة المادية التي يتم تعزيزها بالقدرات المعرفية  التوائم الرقمية المعرفية

الأنشطة المستقلة. وهي تتألف من مجموعة من النماذج الرقمية المترابطة بشكل كبير والمتعلقة بربط 

 واسترجاع البيانات غير المتجانسة ، فضلاً عن النماذج الوصفية والمحاكاة.

الدلالية ، مما  يعزز مفهوم التوائم الرقمية المعرفية القدرات الإدراكية للتوائم الرقمية باستخدام التقنيات

 يمكّنهم من أن يكونوا أكثر وضوحًا وشمولية ويوفر تمثيلاً كاملاً لدورة الحياة للأنظمة المعقدة.

 

تستكشف هذه الورقة إمكانات التوائم الرقمية المعرفية في تعزيز مقاومة الاضطرابات وصيانتها. يتم تحقيق 

ظام ، ولكنه يولد الاضطرابات والشذوذ للحفاظ على التوأم الرقمي الفائق الذي لا يكرر فقط إجراءات الن

 أمان النظام وتمكينه.

 

التوائم الرقمية. التوائم الرقمية المعرفية. انترنت الأشياء؛ صمود؛ الذكاء الاصطناعي؛  الكلمات الرئيسية:

 التعلم الالي؛ تعلم عميق
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1 Context

Since its advent, and with the emergence of new technologies such as 5G, Artificial

Intelligence (AI) and edge computing, IoT has continued to evolve and has become

more powerful and capable of transforming the way businesses operate. And with

the increasing use of IoT devices in businesses, the need of enhancing the resilience

and maintenance of these devices has been indispensable especially since they need

to continue to function optimally and securely even if there are disruptions, including

cyber-attacks, power outages, and physical damage. Considering the growing num-

ber of connected devices and the data they generate, it’s important for businesses

to have systems and processes in place to manage and maintain these devices.

One approach to improving the resilience of IoT systems and avert calamities

is to design the infrastructure and industrial systems with redundancy and failover

mechanisms. Redundancy involves designing systems with backup devices, networks,

or data centers to ensure that if one component fails, the system can continue

to function. However, implementing this methodology would require a significant

investment of both finances and resources. As a result, instead of depending on

redundancy, "Digital Twin (DT)" have been employed.

2 Problem Statement

Maintenance and resilience are critical aspects of any system or asset, from a

simple household appliance to a complex manufacturing plant or a transportation

network.

Effective maintenance practices help to ensure that equipment and systems op-

erate as intended, with minimal downtime, reduced risk of failures, and increased

efficiency. Resilience, on the other hand, refers to the ability of a system to with-
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stand disruptions or shocks and recover quickly from them, while maintaining its

essential functions and capabilities.

However, traditional methods of maintenance are often reactive, based on fixing

problems after they occur, rather than preventing them from happening in the first

place. This approach can be time-consuming, costly, and not always effective in

detecting and preventing failures, particularly in complex and interdependent sys-

tems. Moreover, the increasing complexity of systems and equipment, coupled with

the growing demand for reliability and efficiency, makes maintenance and resilience

even more challenging.

3 Objectives

In this paper, we aim to:

• Define the DT concepts and principles since it has a highly adaptive nature

to to meet the specific needs of their intended use case.

• Analyze and compare the various methodologies employed in constructing a

DT and using it in the field of resilience.

• Introduce the framework CSDT.

4 Thesis Organization

The given work is organized into four chapters, which are outlined as follows:

• Chapter 1 « General Introduction » : In this first chapter, we provide a

contextual analysis and explicate the problem statement and objectives of our

study.

“Cognitive Digital Twins for IoT Resilience and Prevention” Master’s Thesis 4



• Chapter 2: « Background and Definition » : This second chapter aims

to provide a comprehensive overview of the various components which are

pertinent to the topic at hand.

• Chapter 3: « State of the Art » : This third chapter procures a compre-

hensive analysis of the various works examined, followed by a detailed discus-

sion of each approach, culminating in a comparative study and synthesis.

• Chapter 4: « Conclusion » : This final part marks the culmination of

the research conducted in this paper and serves as the introduction to the

proposed Digital Twin and key findings presented in the final project report.
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1 IoT

1.1 Introduction

The IoT is a network of interconnected physical devices that communicate with

each other and exchange data over the internet. These devices can range from smart-

phones and laptops to sensors, cameras, and appliances. The IoT is transforming

many industries, from healthcare and transportation to manufacturing and agricul-

ture. Its devices are often embedded with sensors that collect data, which can be

analyzed to gain insights and inform decision-making.

In this section, different definitions, architectures and components concerning

this topic will be seen.

1.2 Definition of IoT

IoT or Internet of things, the backbone of the Digital Age, the technology that

has the power and potential to revolutionize numerous industries, has no standard

definition yet. But here are a few definitions that has been collected:

• The term IoT is defined by the International Telecommunication Union (ITU)

as a global infrastructure for the information society that enables the inter-

connection of different assets based on communication technologies. [1]. And

in terms of a network that it is “Available anywhere, anytime, by anything and

anyone" [2].

• ITU-T Study Group 13 leads the work of the ITU on standards for Next-

Generation Networks (NGN) and future networks (ITU, SERIES Y, 2005).

It has defined IoT as: “A global infrastructure for the information society,

enabling advanced services by connecting physical and/or virtual things based

on existing and evolving interoperable information.” [2]
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• In [3], it has been defined as “a network of physical objects. The internet has

transformed from being solely a network of computers into a vast network en-

compassing devices of all types and sizes. This includes vehicles, smartphones,

home appliances, toys, cameras, medical instruments, industrial systems, and

even animals. All connected ,all communicating and sharing information based

on stipulated protocols in order to achieve smart reorganizations, positioning,

tracing, safe and control and even personal real time online monitoring , online

upgrade, process control and administration. ”

1.3 Historical Evolution of IoT

The Internet of Things has its root in the early days of the Internet, but it was

not defined until 1999 when the term "Internet of Things" was coined by Kevin

Ashton1, ideas, research or studies on subjects related to IoT have been around for

some time.

Since its creation, IoT has been constantly evolving through several stages of

technological development and expanding into new areas of application, It is much

more than just a simple technology. It has become an integral part of daily life,

increasing efficiency and comfort. [4]

In [5], it is mentioned that the first internet appliance was a Coke machine at

Carnegie Melon University in the early 1980s. The programmers had the ability

to connect to the machine to the internet and remotely monitor the status of the

machine, see if there were drinks available and determine the temperature of the

drinks.

From there, the idea of interconnected devices proliferated. In the 1990s, the

auto industry pioneered the use of RFID (radio-frequency identification) technology

to track inventory in factories and warehouses. By the early 2000s, early examples of
1Kevin Ashton is a British technology pioneer ans his work in Radio-Frequency IDentifica-

tion (RFID) technology and supply chain management paved the way for the development of the
Internet of Things.
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the internet of things began to emerge in the commercial market. One such example

was the introduction of telematics – the combination of telecommunications and

informatics – into vehicles, enabling navigation, vehicle diagnostics, and on-demand

entertainment.

Presumably, before 2025, IoT will have a significant impact on daily life. IoT

can be used in Electronic Voting, Electronic Identifications and in Medical Field to

Support Patients. Robots are working in several sections using IoT. Remote sensing

Robots are also Using IoT. IoT based systems are widely used in Farming. Remote

sensing robots are collecting data with IoT protocols. [4]

1.4 Characteristics of IoT

The fundamental characteristics of the IoT are defined in [3] as follows:

Interconnectivity: anything has the potential to be interconnected with the

global information and communication infrastructure.

Things-related services: The IoT can provide services related to physical

objects while taking into account factors such as protecting privacy and maintaining

consistency between the virtual and physical aspects of the objects. To achieve this,

changes are required to both the technologies used in the physical world and the

information world. These changes are necessary to ensure that thing-related services

can be provided within the limitations and requirements of physical objects.

Heterogeneity: The IoT devices exhibit heterogeneity because they operate on

varying hardware platforms and networks, and utilize different networks to commu-

nicate with other devices or service platforms.

Dynamic changes: The condition of devices in the IoT is subject to dynamic

changes, such as transitioning between sleep and wake modes, connection and dis-

connection, as well as variations in contextual factors such as location and speed.

Additionally, the quantity of devices in the network can also fluctuate dynamically.

Enormous scale: At a minimum, the amount of devices necessitating man-
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agement and intercommunication within the IoT will be ten times larger than the

devices currently linked to the Internet.

Safety: While reaping the advantages of the IoT, it’s crucial not to overlook

safety concerns. As both the originators and beneficiaries of the IoT, we need to

prioritize safety considerations. This encompasses safeguarding our personal infor-

mation and our physical welfare. To ensure comprehensive security, we must develop

a security framework that can scale to secure the endpoints, networks, and the data

transmitted across them.

Connectivity: The ability to connect facilitates access and compatibility within

a network. Accessibility pertains to being able to join a network, whereas compati-

bility refers to the capacity to exchange and utilize data in a standardized manner.

1.5 IoT Architectures

As mentioned, IoT has brought a significant change in the manner and the

way we interact with physical objects and devices located in our environment. It

facilitates communication and information exchange between them over the internet.

Nevertheless, due to the vast number of devices involved and the complexity of the

network infrastructure required to support them, designing and implementing IoT

architecture is an essential starting point.

There are various and plenty types of IoT architectures, each with its unique

advantages and challenges and depend fully on the corresponding use case and sub-

ject. The choice of architecture relies as well on several other factors beside specific

use case, such as the network topology, the scalability, the reliability, and cost-

effectiveness.

In this subsection, the most common IoT architectures are mentioned:
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1.5.1 The Three and Five Layered Architectures

The article [6] talked about two architectures that are widely used: The three

and five-layered architectures that are represented in Figure 2.1

Figure 2.1: A. IoT layered architecture three layered and B. five layered architecture.

• Perception Layer: The perception layer is composed of a set of group of

objects. These objects act as a bridge between the Physical world and the

digital realm utilizing sensors to capture data. Its main objective is to gather

information from the environment through a range of sensors for example tem-

perature, humidity, light, CO2 sensors, cameras, etc., according to the specific

use case and needs of the application. Researchers are primarily concerned

with ensuring the proper identification, management, and security of these

objects within this layer.

• Transport Layer: The purpose of this layer is to establish secure connec-

tions between objects and facilitate the sharing of information among them.

Different communication protocols such as Ethernet, WiFi, Wi-MAX, ZigBee,
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and Bluetooth Low Energy (BLE) can be used to enable this information ex-

change. However, there are still certain challenges that need to be addressed

at this layer, such as reducing energy consumption in the network, ensuring

Quality of Service (QoS), and adapting to dynamic topologies.

• Service Management Layer: It can also be referred to as "the Middleware

Layer", this level facilitates and enables the integration of diverse and het-

erogeneous devices into IoT applications. Additionally, Moreover, it plays a

pivotal role in processing raw data collected by objects in the perception layer.

This data is typically characterized by its large volume and diverse nature.

• Application Layer: The layer in question is primarily tasked with providing

application-specific and use case-specific services to end-users, that is why it

plays a significant role in enhancing the convenience, safety and overall quality

of life of end-users. However, the ability to tailor services to meet specific

needs and preferences makes this layer critical in the success and adoption

of IoT applications. As such, developers and researchers must continually

work to identify and address the unique challenges associated with providing

application-specific services in this layer.

• Business Layer: The business layer serves as the supervisor of an IoT sys-

tem’s operations and services, utilizing raw data acquired from other layers

to create flow charts, graphs, and business models. Additionally, this layer

is responsible for monitoring, analyzing, and evaluating the IoT system and

its related components. Decision-making is a central activity of the business

layer, as it plays a critical role in determining the direction and success of the

IoT system.
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1.5.2 The Edge Fog Cloud

Edge, fog, and cloud computing are different types of data storage and manage-

ment in IoT.

Edge computing refers to computation at the edge of a device’s network, while

fog computing is an extension of cloud computing that acts as a layer between the

edge and the cloud.

Fog computing is designed to overcome the challenges of edge computing, such

as delays in detection, by processing data in real-time.

The cloud, on the other hand, refers to the on-demand delivery of IT ser-

vices/resources over the internet.

Down below each layer is explained taken from [7].

• Edge:

Edge computing involves processing data locally within the network, specifi-

cally on edge devices and gateways, instead of relying on centralized storage.

By avoiding data transfer to the cloud, it enables quick response times and

unmatched speed.

When it comes to decentralized storage, edge computing stands as the most

secure option. Unlike cloud storage, which distributes data across numer-

ous servers, edge computing employs a vast number of local nodes, potentially

reaching into the thousands. Each device within the edge network can function

as an independent server, making it extremely difficult for hackers to breach.

Gaining synchronized access to thousands of dispersed devices is practically

unattainable.

This distinction also sets fog computing apart from edge computing. Fog

computing serves as a network that connects to the cloud, while edge devices

operate with loose connections and have the ability to act autonomously.

“Cognitive Digital Twins for IoT Resilience and Prevention” Master’s Thesis 15



• Fog:

Fog computing serves as an intermediary layer positioned between the conven-

tional centralized data storage system (cloud) and edge devices. Its purpose is

to extend the capabilities of the cloud by bringing computation and data stor-

age closer to the edge. Fog encompasses multiple nodes, known as fog nodes,

forming a decentralized ecosystem—this stands as the primary contrast be-

tween fog and cloud computing.

When data reaches the fog layer, the individual node determines whether to

process it locally or transmit it to the cloud. Consequently, the data re-

mains accessible even offline since certain portions of it are stored locally.

This presents another significant divergence between fog computing and cloud

computing, as the latter relies on remote servers to execute and store all the

intelligence and computations.

• Cloud:

It is a centralized storage situated further from the endpoints than any other

type of storage. This explains the highest latency, bandwidth cost, and net-

work requirements. On the other hand, cloud is a powerful global solution

that can handle huge amounts of data and scale effectively by engaging more

computing resources and server space. It works great for big data analytics,

long-term data storage and historical data analysis.

2 Internet of Things Maintenance

2.1 Introduction

When it comes to equipment maintenance, there are two prevailing perspectives

[8].
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• The first approach, commonly adopted, involves waiting until a piece of equip-

ment or machinery breaks down before fixing it. While this approach may

suffice for certain aspects of life, it is impractical for large-scale industrial

organizations that depend on numerous assets for their daily operations.

• A more prudent strategy for such enterprises entails taking a proactive mainte-

nance approach. This approach involves conducting regular repairs on equip-

ment to prevent failures and disruptions. However, identifying equipment is-

sues is not always apparent to the naked eye. Therefore, organizations may re-

quire technological assistance, such as software, to gain a better understanding

of their assets’ performance and anticipate potential problems. One valuable

tool in this regard is IoT predictive maintenance.

2.2 Definition of Maintenance

Maintenance refers to the process of preserving or restoring something to a sat-

isfactory condition by performing regular checks, repairs, or updates. It can be

applied to various aspects of life, such as mechanical systems, buildings, software,

and even personal health. The primary goal of maintenance is to prevent the break-

down or failure of a system or object, increase its lifespan, and ensure it remains

safe and functional. In essence, maintenance involves proactive measures to avoid

problems and ensure continued smooth operation.

Maintenance in the context of IoT infrastructures involves a series of tasks de-

signed to identify and correct issues before they cause downtime or other problems.

These tasks may include software updates, firmware updates, hardware repairs or

replacements, and regular inspections to monitor the performance of the system.
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2.3 IoT Predictive Maintenance

IoT predictive maintenance is a maintenance strategy that utilizes the IoT to

collect and analyze data concerning assets, equipment, or machinery. Through the

use of sensors and other instruments, data regarding the status of the equipment is

gathered, enabling the detection of any potential issues that should be addressed to

prevent future outages and avoid unnecessary downtime.

In the context of IoT predictive maintenance, the Internet of Things typically

involves sensors and monitors that are either placed on or integrated into equip-

ment. These sensors monitor various variables that may indicate potential equip-

ment issues. The collected data is then transmitted to other components within

the network, such as predictive maintenance software or other smart manufacturing

systems. By continuously collecting and transmitting real-time equipment perfor-

mance data, other IoT technologies can conduct predictive maintenance analytics.

These analytics help identify potential issues that could lead to equipment failure.

This process enables organizations to better anticipate the likelihood of outages or

disruptions, allowing them to adopt a proactive maintenance approach [8].

To perform predictive maintenance, equipment health and performance are as-

sessed through periodic or continuous monitoring of asset conditions. The data

obtained from IoT devices, which connect various systems and assets, enables busi-

nesses to anticipate, plan for, and take proactive measures in response to potential

events such as equipment failure or parts repair before they occur. Predictive main-

tenance is typically carried out during normal working conditions to avoid disrupting

business operations [9].
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3 Internet of Things Resilience

3.1 Introduction

Resilience is the ability of a system to recover from disruptions and continue to

function effectively. In the context of technology, resilience is becoming increasingly

important as our reliance on interconnected systems grows. Disruptions such as

cyber-attacks, natural disasters, and equipment failures can have significant conse-

quences for businesses and individuals. Resilient systems are designed to minimize

the impact of such disruptions and ensure continuity of service.

3.2 Definition of Resilience

Resilience can be defined as the capacity to adapt, adjust and the ability of

a system to continue operating and delivering services in the face of various and

different types of failures or disruptions, such as hardware or software failures, net-

work outages, cyber attacks, or natural disasters. Resilient computer systems are

designed to anticipate and withstand these challenges, and to recover quickly and

efficiently in the event of a failure or disruption by implementing redundancy, fault

tolerance, and disaster recovery mechanisms, as well as conducting regular testing

and maintenance to ensure that the system remains robust and reliable. Resilience

is a critical attribute of modern computer systems, particularly those that are used

to provide essential services or support critical business operations.

3.3 IoT resilience

In the context of IoT, resilience refers to the capability of IoT systems to main-

tain reliable and secure connectivity, data transmission, and functionality in the face

of various challenges and disruptions, such as network congestion, hardware failures,

cyber attacks, or power outages.
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It also refers to the ability of IoT systems to resist perturbances, recover from

emergencies, and continue functioning in the face of disruptions. There are several

scientific efforts to make IoT systems resilient, and AWS IoT Core features data

redundancy and specific features for data resiliency, such as device shadow and

AWS IoT Device Advisor. However, AWS IoT Core resources are region-specific and

not replicated across regions unless specifically done so. Resilience is increasingly

important as IoT becomes a critical part of the global internet [10] [11].

4 Machine Learning

4.1 Definition of Machine Learning

Machine learning is a branch of AI and computer science that focuses on the use

of data and algorithms to imitate the way that humans learn, gradually improving its

accuracy [12]. It allows software applications to become more accurate at predicting

outcomes without being explicitly programmed to do so.

It holds significance as it provides enterprises with insights into customer behav-

ior trends and operational patterns, facilitating the creation of innovative products.

Prominent companies like Facebook, Google, and Uber have embraced ML as a fun-

damental aspect of their operations, establishing it as a crucial factor for gaining a

competitive edge [13].

4.2 Types of Machine Learning

ML algorithms can be broadly classified into three types:

• Supervised Learning.

• Unsupervised Learning.

• Reinforcement Learning.
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Figure 2.2 represents a diagram that illustrates the different ML algorithm, along

with the categories.

Figure 2.2: Machine learning Types and Algorithms.

4.2.1 Supervised Learning

Supervised learning is a category within ML that relies on external guidance for

the machine to learn [14]. In supervised learning, models are trained using labeled
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datasets [12]. Following training and processing, the model is evaluated by providing

it with sample test data to determine if it accurately predicts the desired output.

The objective of supervised learning is to establish a mapping between input

data and output data. It mirrors the concept of a student learning under the super-

vision of a teacher. An example of supervised learning is spam filtering.

Supervised learning can be further categorized into two types of problems:

• Classification.

• Regression.

4.2.2 Unsupervised Learning

Unsupervised learning is an algorithmic approach in ML that examines and clus-

ters datasets lacking pre-existing labels to uncover patterns and insights [12].

Unlike supervised learning, unsupervised learning does not rely on a training

dataset to guide the models. Instead, the models autonomously discover concealed

patterns and group the data based on similarities and dissimilarities [15].

Unsupervised learning is employed to unveil the underlying structure of datasets

and finds applications across diverse domains, aiding in data feature summarizing

and explanation.

Additionally, it serves as a means of testing AI and is capable of performing more

intricate processing tasks compared to supervised learning systems [12].

Hence further, it can be classified into two types:

• Clustering.

• Association.
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Examples of some Unsupervised learning algorithms are K-means Clustering,

Apriori Algorithm, Eclat, etc.

4.2.3 Reinforcement Learning

Reinforcement Learning is a form of ML that allows an agent to learn within an

interactive environment through trial and error, utilizing feedback obtained from its

own actions and experiences [16].

This approach revolves around rewarding desired behaviors and penalizing un-

desired ones.

The primary focus of reinforcement learning is determining how intelligent agents

should take actions in an environment to maximize cumulative rewards [17].

Reinforcement learning algorithms acquire knowledge from outcomes and make

decisions about the subsequent actions to be taken. It has demonstrated successful

applications in various domains, such as robot control, elevator scheduling, telecom-

munications, backgammon, checkers, and Go.

Reinforcement learning serves as a valuable technique for automated systems

seeking to identify the optimal behavior or path in specific situations. Q-Learning

algorithm is used in reinforcement learning.

Figure 2.32, realized by Thomas Malone, represent the way on what Machine

Learning models can perform.

4.3 Machine Learning Models

4.3.1 Decision Trees

The decision tree is a supervised learning algorithm primarily employed for solv-

ing classification problems, although it can also tackle regression problems. It ac-
2See: https://bit.ly/3gvRho2
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Figure 2.3: Source: Thomas Malone | MIT Sloan.

commodates both categorical and continuous variables [14].

The decision tree presents a tree-like structure comprising nodes and branches

to represent decisions and their possible consequences (Figure 2.4). It initiates

with a root node and further branches out to leaf nodes. Internal nodes represent

dataset features, branches denote decision rules, and leaf nodes signify the problem’s

outcomes [18].

Decision tree algorithms find practical application in various real-world scenar-

ios. For instance, they are utilized in distinguishing between cancerous and non-

cancerous cells and providing car purchase recommendations to customers.

4.3.2 Random Forests

Random forest is a supervised learning algorithm employed in ML for both classi-

fication and regression tasks. It operates as an ensemble learning technique, leverag-

ing multiple classifiers to generate predictions and enhance the model’s performance

[14].
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Figure 2.4: Decision Tree

This approach encompasses numerous decision trees that operate on subsets of

the provided dataset, amalgamating their outcomes to improve predictive accuracy.

It is recommended to have a random forest consisting of 64 to 128 trees, as a higher

number of trees typically leads to increased algorithmic precision.

In other words, The fundamental concept behind random forest is the wisdom

of crowds. A large number of relatively uncorrelated models (trees) operating as a

committee will outperform any of the individual constituent models. It forest uses

bagging and feature randomness when building each tree to ensure that the trees

are uncorrelated [19].

When classifying a new dataset or object, each tree produces a classification

result, and the algorithm predicts the final output based on majority voting.

Random forest demonstrates efficient processing capabilities, making it suitable

for handling missing and inaccurate data. Additionally, it offers a swift execution

speed.

4.3.3 Naive Bayes

The Naive Bayes classifier is a supervised learning algorithm utilized for making

predictions by considering the probability of an object. It derives its name from

Bayes theorem, as it follows the assumption that variables are independent of each
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other, hence "naïve." [14]

Naive Bayes classifiers assume that the value of a particular feature is indepen-

dent of the value of any other feature, given the class variable.

Despite their naive design and oversimplified assumptions, Naive Bayes classifiers

have worked well in many complex real-world situations [20].

Bayes theorem, on which this algorithm is based, deals with conditional prob-

ability. It calculates the likelihood of event A occurring given that event B has

already taken place. The equation for Bayes theorem is expressed in Equation (2.1).

P (A|B) =
P (B|A) · P (A)

P (B)
(2.1)

Naïve Bayes classifier is one of the best classifiers that provide a good result for

a given problem. It is easy to build a naïve bayesian model, and well suited for the

huge amount of dataset. It is mostly used for text classification.

4.3.4 K-Nearest Neighbors

The K-Nearest Neighbour (KNN) algorithm is a supervised learning technique

applicable to both classification and regression problems. It operates by establishing

the similarities between a new data point and existing data points. Utilizing these

similarities, the algorithm categorizes the new data point into the most similar

class. It is also referred to as a "lazy learner" algorithm because it retains all

available datasets and classifies each new instance with the assistance of its K-

nearest neighbors.

To assign the new instance to the most similar class, KNN calculates the dis-

tance between data points using a distance function. Common distance functions

include Euclidean, Minkowski, Manhattan, or Hamming distance, chosen based on

the specific requirements of the problem [14].
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5 Deep Learning

5.1 Definition of Deep Learning

DL, a subset of ML, employs ANN comprising multiple layers to extract high-

level features from raw input data. It mimics the human learning process and is

considered a form of AI.

The algorithms used in DL are organized hierarchically, with each layer growing

in terms of complexity. They find application in various tasks, including supervised

and unsupervised learning, such as speech recognition, image classification, and

natural language processing. Deep learning plays a crucial role in data science, which

encompasses statistics and predictive modeling, offering significant advantages to

data scientists responsible for gathering, analyzing, and interpreting large volumes

of data.

5.2 Deep Learning Models

Several DL algorithms are widely used, including Multilayer Perceptrons (MLPs),

CNNs, Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Ra-

dial Function Networks, and Self-Organizing Maps.

MLPs are considered the fundamental and oldest deep learning algorithm. CNNs

are particularly effective for image and video recognition tasks, while RNNs and

LSTMs are commonly employed for natural language processing and speech recogni-

tion. Radial Function Networks and Self-Organizing Maps are utilized for clustering

and classification purposes.

As mentioned before, DL algorithms are designed to run dynamically through

multiple layers of NN, with pre-training specifically tailored to the given task.

A few of the cited models are about to be presented down below:
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5.2.1 CNNs

A Convolutional Neural Network (CNN) is a widely utilized neural network ar-

chitecture in the realm of AI’s Computer Vision field [21]. Popular type of neural

network architecture used in the field of Computer Vision within Artificial Intelli-

gence. Computer vision enables computers to interpret and understand visual data,

such as images. In the realm of Machine Learning, Artificial Neural Networks exhibit

strong performance. They are employed in various datasets encompassing images,

audio, and text. Different types of Neural Networks serve different purposes. For in-

stance, Recurrent Neural Networks, particularly Long Short-Term Memory (LSTM)

networks, are suitable for predicting word sequences, while Convolutional Neural

Networks are commonly used for image classification. A typical Neural Network

consists of three types of layers:

• Input Layers: This initial layer receives the input data for the model. The

number of neurons in this layer is equivalent to the total number of features

in the data (e.g., the number of pixels in an image).

• Hidden Layers: The input from the Input layer is transmitted to the hid-

den layer(s). The number of hidden layers can vary depending on the model

and the size of the data. Each hidden layer may contain a different number

of neurons, typically exceeding the number of features. The output of each

layer is computed by performing matrix multiplication between the output

of the previous layer, which has learnable weights, and subsequently adding

learnable biases. This is followed by an activation function, which introduces

nonlinearity to the network.

• Output Layer: The output from the hidden layer is fed into a logistic function,

such as sigmoid or softmax, which converts the output of each class into a prob-

ability score for that class. The data is fed into the model, and the output from

each layer is obtained through a process called feedforward. Subsequently, the
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error is calculated using an error function, such as cross-entropy or square loss

error. The error function measures the performance of the network. The next

step involves backpropagation, where derivatives are calculated to minimize

the loss. Backpropagation is essential for adjusting the model’s parameters

and improving its performance.

Convolutional Neural Network consists of multiple layers like the input layer,

Convolutional layer, Pooling layer, and fully connected layers. The Convolutional

layer applies filters to the input image to extract features, the Pooling layer down-

samples the image to reduce computation, and the fully connected layer makes the

final prediction. The network learns the optimal filters through backpropagation

and gradient descent.

5.2.2 Multilayer Perceptrons

MLP serves as an extension of the feed-forward neural network. It encompasses

three distinct layers as depicted in

the input layer, the output layer, and hidden layers, as depicted in Figure 2.5:

1. Input Layer.

2. Output Layer.

3. Hidden Layers.

The input layer receives the input signal for processing, while the output layer

is responsible for performing tasks such as prediction and classification.

The true computational engine of the MLP resides within an arbitrary number

of hidden layers positioned between the input and output layers. Similar to a feed-

forward network, the data flows in a forward direction from the input layer to the

output layer [22].
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Figure 2.5: MLP with a Single Hidden Layer

In an MLP, the neurons are trained using the backpropagation learning algo-

rithm. MLPs are specifically designed to approximate any continuous function and

can effectively address problems that are not linearly separable. Prominent use cases

of MLPs include pattern classification, recognition, prediction, and approximation.

5.2.3 Reccurent Neural Networks

An ANN known as a RNN is specifically designed for handling sequential or

time-series data.

Unlike CNN, RNNs incorporate hidden states and allow the utilization of pre-

vious outputs as inputs. This enables RNNs to effectively process sequential data

by utilizing the output from one time step as the input for the next step. RNNs

find extensive applications in various fields such as natural language processing and

speech recognition. Nonetheless, RNNs do have certain drawbacks, including chal-

lenges with training due to issues like the vanishing and exploding gradients [23].

Another constraint of traditional RNNs is the lack the ability to incorporate fu-

ture inputs into the current state. Furthermore, RNNs encounter difficulties when

dealing with long-term dependencies, which can result in problems such as gradient

vanishing and exploding.
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However, a solution to these limitations emerged in the form of Long Short-Term

Memory Networks (LSTMs). LSTMs were introduced to address these shortcom-

ings by enabling the learning of long-term dependencies through the retention of

information over extended periods [24].

1. Long Short Term Memory (LSTM):

LSTM is a specific type of ANN that finds application in DL and ML tasks.

It serves as a variation of RNNs and exhibits the capability to effectively

handle lengthy time-series data, enabling the learning of order dependencies

in sequence prediction tasks.

In contrast to conventional feedforward neural networks, LSTM incorporates

feedback connections and possesses the ability to process not only individual

data points but also complete data sequences.

One of the primary objectives of LSTM is to address the challenge of long-

term dependencies encountered by RNNs. While RNNs struggle to predict

information stored in long-term memory, LSTM provides more accurate pre-

dictions by leveraging recent information. The structure of LSTM consists of a

chain comprising four neural networks and incorporates memory blocks known

as cells. These cells retain information, and the manipulation of memory is

facilitated by specialized components called gates [25].

Each recurrent neural network consists of a series of repeating neural network

modules, forming a chain. These networks incorporate loops, allowing informa-

tion to be retained within the network. Figure 1 illustrates a simple recurrent

neural network with loops. In this figure, the neural network denoted as Fig-

ure 1, A takes the input xt and generates the output ht. The presence of a
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loop facilitates the transfer of data from one phase of the network to the next.

LSTM is explicitly designed to tackle the problem of long-term dependencies.

Each recurrent neural network is composed of a sequence of repeating neural

network modules. To aid in comprehension of the subsequent sections, Table

2 presents a list of symbols that are utilized to explain the various concepts

[25] [26].

Figure 2.6 illustrates a simple recurrent neural network with loops. LSTM

takes the input xt and generates the output ht. The presence of a loop facili-

tates the transfer of data from one phase of the network to the next. LSTM is

explicitly designed to tackle the problem of long-term dependencies. Each re-

current neural network is composed of a sequence of repeating neural network

modules [26].

Figure 2.6: Simple Recurrent Neural Network

6 Machine Learning VS Deep Learning

Taking into account Figure 2.7:

• The functioning of ML models can be illustrated through the example of

image recognition for distinguishing between cats and other animals.
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In this scenario, the ML model takes images of cats as input. It then

extracts distinct features from these images, such as shape, height, nose,

eyes, and other relevant characteristics. By employing a classification

algorithm, the model analyzes these features and generates a prediction

as output.

• The functioning of DL can be comprehended using the same example of

distinguishing mentioned previously.

In DL models, the images serve as input and are directly fed into the al-

gorithms, eliminating the need for manual feature extraction. The images

traverse through various layers of an artificial neural network, allowing

the model to predict the final output.

Figure 2.7: Machine Learning VS Deep Learning

Table 2.1 taken from [27] shows the Key comparisons between ML and DL.
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Parameter ML DL
Data Depen-
dency

Although ML depends on the
huge amount of data, it can
work with a smaller amount
of data.

DL algorithms highly depend
on a large amount of data,
so we need to feed a large
amount of data for good per-
formance.

Execution
Time

ML algorithm takes less
time to train the model than
DL,However, testing the
model can be time-consuming
and requires a significant
duration.

DL takes a long execution
time to train the model, but
less time to test the model.

Hardware De-
pendencies

Since ML models do not need
much amount of data, so they
can work on low-end ma-
chines.

The DL model needs a huge
amount of data to work effi-
ciently, so they need GPU’s
and hence the high-end ma-
chine.

Feature Engi-
neering

ML models need a step of
the interaction with the ex-
pert performing feature ex-
traction, after which it contin-
ues to progress.

DL is the enhanced version
of ML, so it does not need
to develop the feature ex-
tractor for each problem; the
problem-solving approach fo-
cuses on allowing the model
to learn high-level features di-
rectly from the data.

Problem-
solving ap-
proach

To solve a given problem, the
traditional ML model breaks
the problem in sub-parts, and
after solving each part, pro-
duces the final result.

The problem-solving ap-
proach of a DL model is
unlike tradictional ML mod-
els.

Interpretation
of result

The ease of interpreting the
result for a specific problem
is evident. As when we work
with ML, we can interpret the
result easily, it means why
this result occur, what was
the process.

The interpretation of the re-
sult for a given problem can
get very difficult. We may
get a better result for a given
problem than the ML model,
but we cannot find why this
particular outcome occurred,
and the reasoning.

Type of data ML models mostly require
data in a structured form.

DL models can work with
structured and unstructured
data both as they rely on the
layers of the ANN.

Suitable For ML models are suitable for
solving both simple and mod-
erately complex problems.

DL models are suitable for
solving complex problems.

Table 2.1: Key Differences Between Machine Learning and Deep Learning.
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7 Digital Twins

7.1 Digital Twins History

The article [28] recorded in 2019 that over 850 academic papers on the topic

of Digital Twins have been published since 2016.

The concept of a "twin" has its roots in the National Aeronautics and Space

Administration (NASA) Apollo program of the 1970s. During this time, NASA

built a replica of space vehicles on Earth that mimicked the equipment’s con-

dition during the mission. This was done to ensure that NASA could test and

prepare for every possible scenario that might occur during the mission. This

was the first application of the "twin" concept [29].

In 2003, Michael Grieves, a professor of engineering at the University of Michi-

gan, proposed the idea of a DT in his Product Life-cycle Management (PLM)

course. DT is a virtual digital representation of physical products that can be

used to simulate and analyze real-world scenarios in a virtual environment. DT

technology enables manufacturers to create a digital copy of a physical prod-

uct, which can then be used to monitor and predict its performance, optimize

its design, and reduce the time and cost of maintenance and repairs.

In 2012, NASA applied DT to integrate high-fidelity simulation with a vehicle’s

on-board health management system, maintenance history, and fleet data to

mirror the life of its flying twin. This allowed NASA to monitor the health

and performance of their equipment in real-time, identify potential problems

before they occurred, and increase safety and reliability.

The development of the IoT has boosted the manufacturing industry’s adop-

tion of DT technology. With the IoT, manufacturers can connect their physical
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products to the internet and collect data on their performance in real-time.

This data can then be used to create a DT of the product, which can be used

to monitor and optimize its performance, predict maintenance needs, and im-

prove its design.

Enterprises like Siemens and General Electric (GE) 3, have developed DT plat-

forms for real-time monitoring, inspection, and maintenance. These platforms

enable manufacturers to monitor their products in real-time, identify potential

problems before they occur, and reduce the time and cost of maintenance and

repairs.

In 2017, Tao and Zhang proposed a five-dimensional DT framework to guide

the digitalization and intellectualization of the manufacturing industry. The

framework provides theoretical guidance for the digitalization and intellectual-

ization of the manufacturing industry and includes five dimensions: physical,

cyber, human, virtual, and knowledge.

From 2017 to 2019, Gartner continuously ranked DT among the top 10 tech-

nological trends with strategic values. DT is becoming increasingly important

in the manufacturing industry, as it enables manufacturers to monitor and

optimize their products in real-time, predict maintenance needs, reduce the

time and cost of maintenance and repairs, and improve their designs.

Figure 2.8 provides a brief History summary of the DT.

Similar to what was previously stated, since their inception, DT have rapidly

evolved and become increasingly popular in various industries such as man-

ufacturing, healthcare, and urban planning, among others, thanks to their
3GE is a multinational conglomerate that operates in various industries including aviation,

healthcare, renewable energy, and power generation. It was founded in 1892 and is based in
Boston.
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Figure 2.8: Brief History of Digital Twins.

ability to replicate real-world objects, processes, or systems with a high level

of accuracy, simulate and test different scenarios, monitor their performance

in real-time, and optimize their design and operation, thereby enabling or-

ganizations to make more informed decisions, improve their efficiency, reduce

costs, and enhance their customer experience, and as technology advances and

more data is collected, analyzed, and shared, it is likely that digital twins

will continue to play a vital role in shaping the future of many sectors and

transforming the way we live, work, and interact with the world around us.

Figure 2.9, taken from the article [28], shows advancement, evolution and

development of DT over time.

This new technology is going to be discussed further more in Chapter 3.

“Cognitive Digital Twins for IoT Resilience and Prevention” Master’s Thesis 37



Figure 2.9: Development and spread of Digital Twins over time.
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1 Digital Twins Concepts

1.1 Introduction

The concept of digital twins has become increasingly important in the field of

IoT in recent years. Essentially, a digital twin is a virtual representation of a

physical object or system, created using data gathered from sensors and other

sources.

In the context of IoT, digital twins can be used to monitor and manage physical

assets and systems, such as buildings, vehicles, and manufacturing equipment,

in real-time. By simulating the behavior of the physical object or system,

digital twins can help to identify potential issues and optimize performance.

In this chapter, a comprehensive exploration of the digital twin concept is

provided in more detail in the form of a state of the art that encompasses its

general definition, characteristics and architecture.

1.2 Definition of Digital Twins

DT lacks a universally accepted definition and established standards for its

implementation, which makes it difficult to design, implement, and adopt this

technology widely [30]. Moreover, as DT is used across various domains and

relies on evolving technologies, it needs to be tailored for each domain and is

subject to the current state of these technologies.

Table 3.1 displays a range of DT definitions along with their corresponding

reference and applied fields.

Numerous articles have focused on the absence of a fixed and pre-established
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Domain Definition
Aerospace - A DT is an integrated multiphysics, multiscale, probabilis-

tic simulation of an as-built vehicle or a system that uses
the state-of-the-art physical models and other relevant in-
formation to accurately replicate the life and behavior of its
corresponding flying counterpart. The DT is ultra-realistic
and may consider one or more important and interdepen-
dent vehicle systems.
- DT is a life management and certification paradigm
whereby models and simulations consist of as-built vehi-
cle state, along with recorded loads, environmental condi-
tions, and specific historical data related to the vehicle, in
order to facilitate detailed and precise modeling of individ-
ual aerospace vehicles throughout their operational lifespan.

[31]
[32]

Industry DT is an evolving digital profile of the historical and current
behavior of a physical object or process that helps optimize
business performance. It is based on massive, cumulative,
real-time, real-world data measurements across an array of
dimensions.

[33]

Engineering A DT is a digital replica of physical assets, processes, and
systems that can be used for various purposes, such as sim-
ulation, optimization, and monitoring.

[34]

Healthcare A DT is a personalized, dynamic, and data-driven compu-
tational model that can be used to simulate an individual’s
physiology and health status, and to predict their response
to treatment or changes in lifestyle.

[35]

Agriculture DT is a dynamic approximation of an entity in virtual space,
continuously updated through the collection of data, mod-
els, and what-if simulation. In the majority of applications
found in current research, agricultural DT form a simplified
or functionally reduced view of the observed entity or sys-
tem, as cost, complexity, and goals are balanced with func-
tionality and replication correctness requirements, as guided
by the functional requirements of the intended application.

[36]

Manufacturing DT are software models that represent the attributes and
operating behavior of physical assets and processes. They
support better decision making by simulating how assets
behave given certain inputs.

[37]

Table 3.1: Diverse Definitions of Digital Twins in Literature
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concept for DTs. This gap has been addressed in several articles, which have

proposed the following definitions:

• Grieves and Vickers define the DT as a connection of virtual and digital

representations that comprehensively depict and describes the existing

physical asset, encompassing its molecular composition and overall ge-

ometry. When functioning optimally, a Digital Twin provides all the

information that would typically be gleaned from examining the phys-

ical counterpart. There are two types of Digital Twins: Digital Twin

Prototype (DTP) and Digital Twin Instance (DTI) [30].

• "Various terms have been given in multiple literature works, such as-

’ultra-high fidelity’, ’cradle-to-grave’, ’integrated’ model , Integral Dig-

ital Mock-Up (IDMU). These terms are important and relevant to the

DT concept, however, having multiple definitions and terms has delayed

reaching a consensus on a single representative, unifying definition. In the

simplest words, a digital twin is a ’digital’ ’twin’ of an existing physical

entity" [30].

• "A DT is the virtual digital representation equivalent to physical prod-

ucts" [38].

1.2.1 Deducing a General Definition of Digital Twins

In the course of exploring the literature on DT, it becomes apparent that many

articles have examined the concept of DT within a particular domain, such

as manufacturing or healthcare, as a result, a comprehensive and universally

applicable definition of DT has been elusive.

However, by synthesizing the information collected from these various sources,

we can arrive at a global definition of DT that encompasses the most salient

features and characteristics of the concept:
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DT refer to a combination of virtual machines and computer-based models that

enable the simulation, emulation, or mirroring of the behavior and character-

istics of a physical entity, such as an object, a process, a human, or a human-

related feature. The relationship between a DT and its Physical Twin (PT) is

established through a bijective connection that enables continuous interaction,

communication, and synchronization between the two.

Unlike static models or simulations, DT are living, intelligent, and evolving

models that follow the life-cycle of their PT to monitor, control, and optimize

their processes and functions. DT can predict future statuses, such as defects,

damages, or failures, and simulate and test novel configurations to proactively

apply maintenance operations.

The twinning process is facilitated by a closed-loop optimization approach that

considers the DT, its PT, and the external surrounding environment. This ap-

proach ensures that DT are more than just simple models or simulations. They

are a dynamic and responsive tool that allows designers, engineers, and op-

erators to enhance the efficiency, safety, and performance of physical systems

across various industries.

To aid in visualization,Figure 3.1 is provided.

Figure 3.1: Digital Twin’s Example Representation
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1.3 Components of a Digital Twin

The concept of DT was first introduced by Grieves [39] and defined as having

three components: the digital or virtual part, the physical product or asset,

and the connection between them.

• On the virtual side, the amount of the information available has improved.

Numerous behavioral characteristics have been added so that not only the

product can be visualized, but its performance capabilities can be tested

as well.

• On the physical side, more information about the characteristics of the

physical product can be collected: All types of physical measurements

from automated quality control station such as Coordinate Measuring

Machine (CMMs) can be collected.

As the concept evolved, other authors such as Tao et al. have extended the

definition of a DT to include additional components, such as data and service.

Tao et al. also identified Verification, Validation and Accreditation (VVA) as

necessary components of a DT. With the introduction of data models, Miller

et al. further expanded the definition of a DT to include an integration of

multiple models [30].

However, despite these efforts to refine the definition of a DT, reaching a con-

sensus on its fundamental requirements remains challenging. This is because

the necessary components and properties of a DT vary across different works,

and the domain-dependence of DT calls for a defining the components that

can be generalized across domains.

To address this challenge, researchers have collated and integrated the neces-

sary components and properties from previous works to provide a comprehen-

sive definition of a DT. The properties and components considered necessary
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for a DT are based on their existence in the literature and the researchers’

understanding of the DT concept. By integrating the contributions of pre-

vious works, which have only been concerned with some components of DT,

researchers aim to provide a more holistic definition of a DT.

Based on this analysis and understanding, researchers have defined the ele-

mentary and imperative components of a DT. These components provide a

comprehensive definition of a DT that can be used across domains. By refining

the definition of a DT and its fundamental requirements, researchers aim to

provide a framework that can support the development and implementation

of DT in a range of applications and industries.

The Table 3.2 taken from [30], summarises how each component contributes

uniquely to the functions of DT. Removing any component voids the DT of

the functionality and its uniqueness. The three first rows are required, and

the rest contribute to the uniqueness of the Digital Twin.

Characteristics Definitions
Physical Asset What the digital twin is a twin of.
Digital Asset The Digital Twin
Continuous Bijective Rela-
tion

For real-time synchronisation and twinning.

IoT For data collection and information sharing.
Time Continuous Data For synchronisation and input to ML.
ML For analytics of the asset.
Security To prevent data leaks and information compro-

mises.
Evaluation metrics / Test-
ing

To evaluate the performance of DT.

Table 3.2: The Required and Optional Components of a Digital Twin.

☞ Note: In this paper, the considered components are: Physical Asset, Digital

Asset, Continuous Bijective Relation, IoT, ML.
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1.4 Characteristics and Requirements of a Digital Twin

Although the definition of a digital twin may appear straightforward, it is the

properties of the technology that distinguish it as more than just a mere digital

replica. Some properties are required to create an accurate and authentic

digital twin, while others are dynamic and can evolve over time. This section

will explore both types of characteristics in detail.

1.4.1 Essential Characteristics (Requirements)

The Necessary properties and features mentioned in the Article [30] are:

• Real-time connection with the physical entity by making a bi-univocal

relation between DT and the physical asset which means that the PT is

uniquely paired with its DT.

• Self-evolution is a characteristic that has not been explored much. Seld-

evolution means that a DT can learn and adapt in real-time, by providing

feedback to both physical asset and DT. This can be easily harnessed now

due to the up rise of machine learning tools: to remodel and redesign itself

(such as reinforcement learning). The frequency of this synchronisation

depends on the update scenarios, such as event-based (supply chain),

periodic intervals (aircraft), condition based (logistics), etc.

• Continuous ML analysis (dependent on the frequency of the synchroni-

sation), not just one-time output forecasting.

• Availability of time-series (or time continuous) data for monitoring, and

as input to ML system.

• Domain dependence (or Domain specific services): According to the do-

main, a DT may provide or prioritise services specific to the industry.
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These are the same ’domain specific’ services which exist in the physical

asset (for example the optimisation problem).

• Knowledge Database: it provides the Digital Twin with the Knowledge

base required to provide Services. In Order to filter out the specific

Knowledge from the huge amounts of Data collected on the Internet –

that is to say Big Data (BD) – these Amounts of Data must be analyzed

accordingly [40].

Table 3.3 shows the characteristics presented in [41].

1.4.2 Dynamic Characteristics

A hierarchy of digital twins can be established by utilizing these dynamic

properties [30].

• Autonomy: A DT could either make changes to the physical asset itself,

or a human in control could make changes to the DT. This applies

differently to different hierarchies of components present in the twin, such

as to some parts of the ML system, or some part of the decision making

system. Hence, the property of a DT to be autonomous, not autonomous,

or partly autonomous.This classification also includes the self-evolution

mechanism of DT (what changes must it make to itself, and what changes

must be approved by a human).

• Synchronisation: Synchronisation of data could either continuously or

at certain time intervals. These depend on a number of factors such as

technology, resources available, need for the data and type of ML al-

gorithm being used. A DT could have sub-components which could be

partly continuously synchronised and partly event-based synchronised.

This synchronisation can result in different hierarchies based on the fol-

lowing:
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Characteristics Definitions
Physical Entity/
Physical Twin

The physical entity/twin exists in the external real environ-
ment.

Virtual Entity/
Virtual Twin

The virtual entity/twin that exists in the virtual environment.

Physical Envi-
ronment

The environment within which the PT exists.

Virtual Environ-
ment

The environment within which the virtual entity/twin exists.

State The measured values for all parameters corresponding to the
PT, DT and its environment.

Metrology The act of measuring the state of the physical/virtual en-
tity/twin.

Realisation The act of changing the state of the physical/virtual en-
tity/twin.

Twinning The act of synchronising the states of the physical and virtual
entity/twin.

Twinning Rate The rate at which twinning occurs.
Physical-to-
Virtual Connec-
tion/ Twinning

The data connections/process of measuring the state of the
physical entity/twin/environment and realising that state in
the virtual entity/twin/environment.

Virtual-to-
Physical Con-
nection/ Twin-
ning

The data connections/process of measuring the state of the
virtual entity/twin/environment and realising that state in the
physical entity/twin/environment.

Physical Pro-
cesses

The processes within which the physical entity/twin is en-
gaged, and/or the processes acting with or upon the physical
entity/twin.

Virtual Pro-
cesses

The processes within which the virtual entity/twin is engaged,
and/or the processes acting with or upon the virtual en-
tity/twin.

Table 3.3: The characteristics of the Digital Twin and their descriptions.
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(a) How often the data is collected?

(b) How often the data is stored?

(c) How often the DT is updated?

1.4.3 Key Characteristics Highlighted in this Paper

In this paper, the characteristics taken into consideration are the following:

• Real-time connection with the physical entity.

• ML analysis.

• Domain dependence.

• Knowledge database

• Availability of time-series data.

• Synchronisation.

1.5 An Overview on the Predecessors of Digital Twins

and Their Key Differences

The process of generating virtual representations of physical objects, facilities,

or processes results in the creation of virtual models that belong to a virtual

space. These models are essentially computer-generated replicas of their real-

world counterparts and exist within a digital environment. In this subsection,

a distinction is made between the several types of Digital Models.

These Models differ primarily in how Data Flows between an original in Phys-

ical Space and its Model in Virtual Space. As can be seen in Figure 3.2,

the Organization of the Data Flow in these Models is either manual and/or

automatic. These three Types of Digital Models are presented below.
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1.5.1 Digital Model / Digital Simulation Model

In [30], the author talked about the flow of data of a DT by mentioning that it

has only manual exchange of data and that it does not showcase the real-time

state of the model.

Similarly, the author of [40] defines the purpose of a Digital Simulation Model:

it is to replicate a system with its dynamic internal Processes in order to obtain

Knowledge that can be transferred to the original Physical System.

The Simulation is mainly realized with the Support of Computers using an

experimental Digital Model. This is typically carried out spontaneously and

only at certain Times. In doing so, often only those Features of the original

System are modeled that are of Importance for specific Problems to be solved.

As already mentioned above, the special Feature of the Use of Digital Simu-

lation Models is that the Data between the Physical Original System and the

Simulation Model is not transferred directly (automatically) in both directions

– but indirectly – and often manually.

1.5.2 Digital Shadow

Digital Shadow is a saved data copy of the physical state [30], it sums all the

data that is left behind every time a digital service is used, such as the Internet

or a mobile phone. It is a collection of data traces put together for a specific

purpose and can include measured parameters as well as historical data [42].

It has a one way data flow from physical object to the digital object [30].

In the industrial sector, digital shadows represent virtual copies that are cre-

ated to interact with other people and environments. It is possible to make

digital shadows of digital twins because they can capture and simplify the
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multitude of information that they generate.

1.5.3 Digital Twin

The digital twin on the other hand, has fully integrated data flow where the

digital twin properly reflects the actual state of the physical object.

Figure 3.2: Digital Simulation VS Digital Shadow VS Digital Twin

1.5.4 Digital Model VS Digital Shadow VS Digital Twin

After defining each concept individually, a comparative analysis can be made.

Digital model, digital shadow, and digital twin are related concepts but have

distinct differences.
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A digital model is a computerized, data model of a building, product, or some

other object that describes the form of an existing or proposed object.

A digital shadow represents virtual copies that we create to interact with other

people and environments. In the industrial sector, it is used to monitor and

optimize the performance of physical assets.

A digital twin is a virtual replica of a physical asset that is used to simulate,

predict, and optimize the performance of the asset. It emphasizes the bi-

directional approach, where the information flow not only from digital assets

to the physical world but also loops back from the physical world to the digital

world [43] [44] [45] [46] [47].

1.6 Different Types of Digital Twins

There are four distinct types of digital twin technology [48] [49], each with

its own characteristics and benefits. These types include component, asset,

system, and process twins. In this subsection, each of these types are going to

be seen in more detail.

To assist with visualization, Figure 3.3 is provided, which showcases an exam-

ple of each type of DT.

1.6.1 Components Twins

Digital models of individual components or parts, such as motors, sensors,

switches, and valves, are known as component twins. These twins are the

basic unit of a DT and the smallest example of a functioning component.

They offer detailed information regarding a component’s behavior and perfor-

mance in real-time as well as over time. This enables organizations to monitor

the performance and health of these components and make necessary changes

whenever required.
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1.6.2 Asset Twins

Digital models of physical assets and when two or more components work

together, such as buildings, machines, and vehicles, are referred to as asset

twins. These twins provide real-time information about the operational sta-

tus, performance data and environmental conditions of an asset. As a result,

organizations can minimize downtime and enhance the efficiency of their op-

erations.

1.6.3 System Twins/Unit Twins

The next level of magnification involves system or unit twins, which enables

to detect different assets connected to form a whole functioning system.

These twins facilitate the monitoring and analysis of a system’s performance,

helping organizations to pinpoint areas that require improvement. System

twins enable organizations to optimize their processes and enhance their op-

erational efficiency. They provide visibility regarding the interaction of assets,

and may suggest performance enhancements.

1.6.4 Process Twins

Digital models of entire business processes or customer journeys are referred to

as process twins. It is the macro level of magnification. They furnish compre-

hensive information on how customers interact with an organization’s products

and services in real-time, assisting organizations in identifying areas where cus-

tomer experience can be enhanced. They reveal how systems work together

to create an entire production facility. Process twins can help determine the

perfect timing schemes that ultimately influence overall effectiveness.
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Figure 3.3: Digital Twin’s types Example Robot Poppy Ergo Jr

In [28], two different types of a DT have been given:

(a) A Dynamic DT fed by live data flows from a physical asset, for ex-
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ample a building, or one of its components, like a lift motor. Insights

and programmed instructions from the digital twin can then impact the

physical twin using real-time control mechanisms, for example shutting

down a faulty lift or adjusting the temperature of a room.

(b) A Static DT that changes periodically as long-term data about a phys-

ical asset are added in. This type of digital twin is used for strategic

planning, and feedback into the physical twin is achieved through the

capital investment process.
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2 Digital Twins with ML and DL

2.1 Introduction

ML and DL are an important aspect of DT technology, as they can be used

to predict and analyze data in order to improve decision-making and optimize

performance. There are several studies that explore the integration of ML and

DL in DT technology, including the use of DL for decision support [50].

It is used in DT as well to create smart machines and plants whereby the

inputs from sensors are analyzed in real-time.DT integrate IoT, AI and ML

with software analytics to create digital living. The purpose of integrating DL

and DT is to improve the accuracy of the DT model and to reduce the time and

cost of the modeling process. ML provides important real-time insights that

enhance situational awareness and enable fast, effective responses. It often

can predict the future behavior of the system and provide recommendations

for optimizing the system’s performance [51] [52] [53].

2.2 ML Appliance in Digital Twins

As it is mentioned in [53], there are two widely used Data Science (specif-

ically ML) areas used in DT that are explained down bellow and has been

summarized in Table 3.4.

2.2.1 Diagnostic and Predictive Analytics:

The field of IoT has brought about significant advancements in the realm of

smart machines and plants. With the ability to connect a vast network of

devices, IoT enables the seamless exchange of data and information between

interconnected devices, systems, and humans.
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As stated in [53], by integrating ML algorithms with IoT, intelligent systems

that analyze and understand vast amounts of data in real-time can be created.

These systems can then use this data to diagnose potential problems and

predict future behaviors of the system.

The Twin is one such intelligent system that uses IoT and ML algorithms to

analyze and understand inputs from various sensors in real-time. The Twin is

essentially a virtual replica of the physical system, and it continually updates

itself based on the data received from the sensors.

Using advanced ML algorithms, the Twin can learn from historical data and

use this information to make predictions about the future behavior of the

system. This ability to predict future behaviors can help prevent failures and

other problems before they occur, saving time, money, and potentially even

lives.

The Twin can also diagnose the causes of problems by analyzing sensor data

in real-time. By identifying patterns and anomalies in the data, the Twin can

quickly determine the root cause of the issue and suggest potential solutions.

In summary, IoT-based ML models, such as the Twin, are revolutionizing the

way a complex system is designed and maintained.

By enabling real-time analysis and understanding of sensor data, these models

can help prevent problems before they occur, improving efficiency and reducing

downtime.

2.2.2 Prescriptive Analytics:

Prescriptive Analytics is a field of data science that involves using advanced

mathematical and computational techniques to identify optimal or feasible

solutions to complex problems. Specifically, prescriptive analytics involves

simulating an entire network of interconnected systems to identify the best
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possible solution from a very large set of candidate solutions, given a set of

variables and constraints that must be adhered to.

The primary objective of prescriptive analytics is to maximize stated business

goals, such as throughput, utilization, output, and other key performance

indicators. This can involve creating schedules for resources such as vehicles,

personnel, and machines, to ensure maximum efficiency and productivity.

In practice, prescriptive analytics is widely used in supply chain planning and

scheduling. For example, a logistics provider might use prescriptive analytics

to create a schedule for its resources to ensure on-time delivery, while a man-

ufacturer might use the technique to optimize the utilization of machines and

operators to achieve maximum on-time, in-full deliveries.

To solve these complex decision-driven problems, prescriptive analytics relies

on a technique called Constrained Mathematical Optimization. This involves

formulating mathematical models that take into account all of the variables

and constraints that must be considered in order to arrive at an optimal or

feasible solution.

Powerful solvers are then used to solve these complex mathematical models,

often involving millions of variables and constraints, to arrive at the best pos-

sible solution. This approach is highly effective at solving complex problems

that would be too difficult or time-consuming to solve manually, and can help

organizations make better decisions and achieve their stated business goals

more efficiently.

To summarize, ML models predict likely outcomes for a given set of input fea-

tures based on history, and Optimization models helps you decide that should

a predicted outcome(s) happen.

☞ Note: This study focuses on the first point explained in Section 2.2.1.
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Diagnostic and Predictive Analyt-
ics

Prescriptive Analytics

Given a range of inputs, the Twin
should be able to diagnose the causes or
predict the future behavior of the sys-
tem. IoT based machine learning mod-
els is what is used to create smart ma-
chines and plants whereby the inputs
from sensors are analyzed in real time
to diagnose, predict and thereby pre-
vent future problems and failures before
they occur.

This is where an entire network is sim-
ulated to identify an optimal or feasible
solution from a very large set of candi-
dates, given a set of variables and con-
straints to be adhered to, usually with
the objective of maximizing stated busi-
ness goals.

Table 3.4: Diagnostic and Predictive Analytics VS Prescriptive Analytics

2.3 Selecting an Adapted Model for IoT tabular Data

When selecting an adapted model for IoT tabular data, there are several factors

to take into consideration. A few of those key considerations are mentioned

down below:

• Data Type:

IoT devices generate various different types of data, among them, struc-

tured data, unstructured data, time-series data, etc. The chosen model

should be capable of handling the specific type of data generated by the

IoT devices so that it can give a good result.

• Complexity:

IoT data can be complex and difficult to analyze so the selected model

should be able to handle the complexity of the data and provide accurate

results.

• Scale:

IoT devices generate a large volume of data, often in real-time. The model

that would be chosen should be capable of processing large amounts of

data quickly and efficiently.
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• Security:

IoT data can be sensitive and confidential. The model must have robust

security features to protect the data from unauthorized access.

• Integration:

The model must be compatible with the existing technology stack and

able to integrate with other systems and applications in the targeted

organization.

• Deployment:

The deployment options for the model should be taking into considera-

tion, including cloud-based, on-premises, or hybrid solutions, depending

on the organization’s needs.

Some popular models for IoT data analysis include ML algorithms, DL Neural

Network (NN) and statistical models. It’s important to evaluate different

models and their capabilities as it has been done in Chapter 1, Section 4.3.

Before selecting the model that suits best the IoT data, few points needs to

be specified especially concerning the data type since it would be the input of

the future model. Down below are the characteristics of the selected use case

that would be presented in the engineering report:

• The datatype is time series data.

• the Machine learning problem is a classification problem.

• The selected model needs to handle scalability and efficiency, since as

mentioned previously, DTs can handle huge data coming from different

data sources and large datasets with high-dimensional features efficiently.

• Real-time prediction.

The models that suits more these descriptions are:
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• Recurrent Neural Networks.

• Decision Trees.

An article that used RNN in presented in the next subsection.

2.3.1 Design and development of RNN anomaly detection model

for IoT networks

2.3.1.1 Description

The contributions of the mentioned paper [26] is to:

• Design of an anomaly detection model for IoT networks using a RNN.

• Design of an anomaly detection model for IoT networks using CNN and

RNN.

• A lightweight anomaly detection model for IoT networks using a RNN.

• Performance improvements of multiclass and binary classification models.

The focus is established on the proposed model. But first, the stages of an

LSTM are viewed in details.

List of symbols:

xt : Input.

ht : New hidden state.

ht−1 : Previous hidden state.

Ct−1 : Previous cell state.

C̃t : Current cell state (Candidate).

Ct : New cell state.

ft : Forgot gate.
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it : Input gate.

(x) : Sigmoid function.

tanh(x) : Tanh function.

Wx : Gate weight.

bx : Gate biases.

(a) Phase 1: The initial stage of the procedure involves the implementation

of the forget gate, where the determination is made regarding the rele-

vance of specific segments within the cell state. In other words, the focus

of this step is on identifying the information that should be disregarded

from the cell state.

This assessment is based on the combination of the preceding hidden state

and the fresh input data. And the mentioned determination is carried

out by a sigmoid layer referred to as the "forget gate layer".

Through the utilization of the sigmoid activation shown in the left side

of Figure 3.4, the network analyzes the values in ht−1 (previous hidden

state) and xt (new input data) to produce a vector where each element

falls within the range of [0, 1] in the cell state Ct−1 A value of 1 indicates

complete retention, while a value of 0 signifies complete discarding [26]

[54].

Figure 3.4: Sigmoid and Tanh Functions
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The operation of the forget gate layer, which is depicted in Figure 3.5, is

captured by Equation (3.1).

ft = σ(Wf · [ht−1, xt] + bf ) (3.1)

it = σ(Wi · [ht−1, xt] + bi) (3.2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3.3)

Ct = ft × Ct−1 + it × C̃t (3.4)

Figure 3.5: LSTM Forget Layer Operation

After generating the output values, they are multiplied element-wise with

the previous cell state. This pointwise multiplication serves to diminish

the impact of the cell state components that are considered irrelevant by

the forget gate network. Those components receive a value close to 0,

resulting in reduced influence on subsequent steps [54].

“Cognitive Digital Twins for IoT Resilience and Prevention” Master’s Thesis 65



In summary, the forget gate determines which aspects of the long-term

memory should be disregarded (given less weight) based on the prior hid-

den state and the latest data point in the sequence.

(b) Phase 2:

In this next step, the memory network and input gate come into play.

The objective of this stage is to identify the pertinent information to be

incorporated into the long-term memory (cell state) of the network, con-

sidering the preceding hidden state (ht−1) and the fresh input data (xt).

The New Memory Network:

it is a tanh activated neural network which has learned how to combine

the previous hidden state and new input data to generate a ‘new memory

update vector’. This vector essentially contains information from the new

input data given the context from the previous hidden state. This vector

tells us how much to update each component of the long-term memory

(cell state) of the network given the new data [54].

The tanh function has been used in this context because its output val-

ues range from -1 to 1, allowing for the inclusion of negative values. The

inclusion of negative values is crucial for the intent of diminishing the

influence of a component in the cell state.

Input Gate:

In the first part mentioned above, which involves generating the new

memory vector, a significant issue arises. It fails to assess whether the

new input data holds any significance worth remembering. This is where

the input gate comes in.
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The input gate operates as a filter, employing a sigmoid-activated network

to identify the components of the "new memory vector" that are worth

retaining. By producing a vector of values ranging from 0 to 1 (due to the

sigmoid activation), the input gate functions as a filter through pointwise

multiplication. Similar to our observations with the forget gate, an out-

put value close to zero indicates that the corresponding element of the

cell state should not be updated.

Output: The outputs from the first and second parts are multiplied

element-wise. This operation ensures that the magnitude of the newly

chosen information determined in the second part is regulated and set to

0 if necessary.

The resulting combined vector is then added to the cell state, effectively

updating the network’s long-term memory [54].

The operation of the Input gate layer, which is depicted in Figure 3.6, is

captured by Equation (3.2) and Equation (3.3).

(c) Phase 3:

In LSTM networks, the cell state refers to the memory component that

carries information throughout the sequence. It serves as a form of long-

term memory that allows the network to retain information over longer

periods, mitigating the vanishing gradient problem.

The cell state acts as an information highway, enabling the LSTM to pre-

serve relevant information and discard irrelevant information over time.

It runs parallel to the hidden state and undergoes a series of operations

such as addition, multiplication, and modulation through gates (input
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Figure 3.6: LSTM Input Gate Layer Operation

gate, forget gate, and output gate) to regulate the flow of information.

The cell state serves as the primary component that captures the net-

work’s memory and plays a crucial role in retaining and updating in-

formation throughout the sequence processing in LSTM networks. It is

presented in Figure 3.7 and is captured by Equation (3.4).

(d) Phase 4:

In order to ensure that only essential information is outputted and saved

to the new hidden state, we apply a filter to the updated cell state.

However, before applying the filter, we subject the cell state to a tanh

function, which confines the values within the range of [-1, 1].

Here is the step-by-step process for this final step [54]:

• The current cell state is pointwise transformed using the tanh func-

tion, resulting in the squished cell state that now resides within the
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Figure 3.7: LSTM Cell State Operation

interval of [-1, 1].

• Both the previous hidden state and the current input data are passed

through a sigmoid-activated neural network, generating the filter vec-

tor.

• The squished cell state is then multiplied pointwise with the filter

vector obtained from the previous step.

• The resulting output becomes the new hidden state.

This process ensures that the outputted hidden state only contains perti-

nent information by applying the filter derived from the sigmoid network

to the transformed cell state.

This step is presented in Figure 3.8.

Why RNNs instead of another Model?

The concerned article mentioned that DL techniques gained popularity due to

their ability to detect computer network threats and abnormalities in various

applications and that an RNN model has shown to be effective in multiple
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Figure 3.8: LSTM Output Gate Operation

areas due to its better capability, so their realised model consists of an in-

put layer, output layer, and four recurrent, activation, normalization, activity

regularization and dropout layers.

However, there are frequent reports and articles stating that Tree-Based Mod-

els tend to achieve superior performance compared to Neural Networks.

2.3.2 Why do tree-based models still outperform deep learning on

tabular data?

In this article [55], 45 tabular datasets has been used to perform a compari-

son between various models. Those datasets has been selected depending on

different characteristics and differs on:

• Heterogeneous data.

• Real-world data.
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• Not deterministic.

The selected models are :

• Scikit Learn’s RandomForest.

• GradientBoostingTrees (GBTs) (or HistGradientBoostingTrees when us-

ing categorical features).

• XGBoost.

• MLP.

• Resnet.

Figure 3.9 represents the results on medium-sized datasets with only numerical

features. Dotted lines correspond to the score of the default hyperparameters.

Each value corresponds to the test score of the best model (on the validation

set) after a specific number of random search iterations, averaged on 15 shuffles

of the random search order. The ribbon corresponds to the minimum and

maximum scores on these 15 shuffles.

Figure 3.9: Results on medium-sized datasets with only numerical features
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And Figure 3.10 represents results on medium-sized datasets, with both nu-

merical and categorical features.

Figure 3.10: Results on medium-sized datasets, with both numerical and categorical
features

And it has been proven that tuning the hyperparameters does not make the

NNs perform better than tree-based model.

3 The use of Digital Twins for Resilience and

Prevention

3.1 Digital twins as run-time predictive models for the

resilience of cyber-physical systems: a conceptual frame-

work

The objective of the paper [56] is to propose a new approach for enhancing

the resilience of Cyber-Physical Systems (CPSs) by using DT as run-time pre-
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dictive models.

CPSs are complex systems that integrate physical components with digital

technologies and are increasingly being used in safety-critical applications such

as transportation, healthcare, and energy systems. However, these systems are

also vulnerable to disruptions and failures that can have serious consequences,

including safety risks, financial losses, and damage to reputation.

Just like in IoT systems, which is our study-case, disturbance, anomalies and

interference is a major problem that can happen in time-series data in every

Information Technology (IT) and IoT systems. With the big amounts of time

series data produced every day by multiple sensors, the human is no longer

able to perform the anomaly detection task manually.

Therefore, developing an approach that can enhance the resilience of CPSs

and enable them to adapt and recover from disruptions has been developed is

the objective of the referenced article.

Existing approaches to CPSs resilience often focus on reactive measures such

as a detection system and recovery. However, these measures may not be

sufficient to address the increasing complexity and unpredictability of CPSs.

The authors argue that DT can provide a proactive, predictive approach to

enhancing CPSs resilience.

They can predict potential failures and recommend actions to prevent them,

thus enabling CPSs to anticipate and respond to disruptions more effectively.

Thoroughly, the objective of the paper is to propose a conceptual framework

for using DT as run-time predictive models to enhance the resilience of CPSs.

The authors aim to demonstrate that this approach can significantly improve

the performance, safety, and reliability of CPSs, and can reduce downtime and

maintenance costs. The paper also aims to contribute to the field of CPSs by
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highlighting the potential of DT as a tool for enhancing resilience and provid-

ing a framework for further research into their use in CPSs applications.

To adapt this paper to our specific problematic which is enhancing the re-

silience of IoT systems by using DT , here is what can be extracted :

• The paper highlights the importance of resilience in the context of CPSs

and argues that resilience is not just about recovering from disruptions,

but also about adapting to changing conditions and mitigating the impact

of disruptions.

This is particularly relevant for IoT systems, which are often subject to

a wide range of potential disruptions, such as network outages, cyber-

attacks, and environmental factors. By understanding the importance

of resilience, An effective approach to enhancing the resilience of an IoT

system can be developed.

• The paper proposes a conceptual framework for creating DT of CPSs and

using them as run-time predictive models. This approach can be applied

to IoT systems as well.

DT can help to predict and prevent disruptions in IoT systems, and

can provide a tool for testing and optimizing these systems in a virtual

environment. By considering the use of DT in an IoT system, its resilience

and performance improves.

• It has been suggested to explore the potential of DT for enhancing the

social and environmental sustainability of CPSs. This is equally relevant

for IoT systems, where sustainability is an increasingly important con-

cern. For example, the DT may be used to optimize energy usage, reduce

waste, or improve the environmental impact of the IoT system.
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3.2 Cognitive Digital Twins for Resilience in Production:

A Conceptual Framework

Similar to [56], The objective of this article [57] is to propose a framework to

enhance the resilience, but instead of CPS, it is for production systems using

cognitive DT.

Why production systems? Because they have become more intricate and inter-

dependent in recent times, making them susceptible to a range of disruptions

and uncertainties. To tackle these challenges, experts and researchers are ex-

ploring fresh approaches to boost the resilience of production systems. One

such approach involves using cognitive DT to improve the system’s ability to

withstand disruptions and uncertainties.

The article aims to explore the concept of cognitive DT, which are DT that

incorporate AI and ML to enhance their capabilities. These DT can provide

real-time feedback to operators, predict potential issues before they occur, and

optimize production processes.

Here is what this paper discussed and tried to attain as objectives:

• Discuss how cognitive DT can be used to improve production processes

and increase resilience. For example, DT can help identify potential issues

in the production process and provide recommendations for addressing

them, reducing the risk of disruptions.

• Explain how DT can help optimize the production process by simulating

different scenarios and identifying the most efficient production methods.

• Elucidate how Cognitive Digital Twin (CDT) presents several challenges,

among them data privacy concerns, the need for significant computing

power, and the complexity of integrating DT into existing production

systems.
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To give a solution to these problems and challenges, the goal is to provide

a roadmap for the development and deployment of CDT in production

systems. The roadmap includes several steps, such as identifying the Key

Performance Indicators (KPIs) that the DT will monitor, selecting the

appropriate AI and ML algorithms, and developing a data management

strategy.

• Provide a framework for using CDT to enhance the resilience of produc-

tion systems. By leveraging the power of AI and ML, CDT can help

production systems adapt to changing conditions, reduce the risk of dis-

ruptions, and improve overall efficiency and productivity.

3.3 State of the Art in using Digital Twins for prevention

• In [58], Koen Bruynseels, Filippo Santoni de Sio and Jeroen van den

Hoven used Digital Twins in healthcare to reflet the current state of

physical objects by redefining ’normality’ and ’health’ based on individ-

ual patterns compared to population patterns, impacting the distinction

between therapy and enhancement. The concept of Digital Twins is a

valuable tool for analyzing the ethical and conceptual aspects of future

healthcare and human enhancement by utilizing individualized data on

molecular makeup, physiology, lifestyle, and diet. Comparing Digital

Twins across populations helps differentiate between health and disease,

shaping the therapy-enhancement debate. Digital Twins have the poten-

tial to identify effective routes for therapy and enhancement, allowing

individuals to define their well-being preferences. However, ethical, legal,

and social concerns arise, including challenges to equality and the risk of

discrimination based on compiled information. Governance is necessary

to ensure transparency, data privacy, and fair access to this data-intensive
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technology.

• In [59], the authors presented the benefits of using digital twins in manu-

facturing Six core cognitive capabilities (perception, attention, memory,

reasoning, problem-solving, and learning) were described along with their

ability to influence complex manufacturing decisions and future auton-

omy.

• The research paper [60] presents a novel framework for anomaly detec-

tion in digital twin-based Cyber-Physical Systems (CPS). The frame-

work includes two main components: a discrepancy detector based on

the Gaussian Mixture Model (GMM), and an anomaly classifier utilizing

the Hidden Markov Model (HMM).

Initially, the discrepancy detector analyzes data from two sources: one

from the physical plant and the other from the digital twin. It assesses if

there are any anomalies present by comparing the data from both sources.

The generated signatures from this detector are then used by the anomaly

classifier to classify different types of anomalies, employing the HMM.

To validate the effectiveness of the framework, experiments were con-

ducted using the Tennessee Eastman process model.

In future endeavors, the researchers aim to enhance the framework by

integrating correction mechanisms. These mechanisms would be designed

to maintain system stability based on the classification results obtained

from the anomaly classifier.

• In the paper [61], a pioneering approach is introduced for constructing

a dynamic digital replica, or digital twin, of an additive manufacturing

system utilizing retrofitted low-end sensors found in IoT devices. By

leveraging side-channels like acoustic, vibration, magnetic, and power

signals, the system can be indirectly monitored. These signals are then

processed using a clustering algorithm to generate a comprehensive fin-
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gerprint library that accurately represents the physical state of the sys-

tem, essentially creating a physical twin in the digital realm. The digital

twin serves the purpose of detecting and pinpointing anomalous physical

emissions that may lead to variations in product quality.

With an average accuracy of 83.09%, the digital twin successfully localizes

errors by comparing the detected emissions to the established fingerprint

library. Furthermore, an algorithm is presented for updating the digital

twin and deducing any deviations in quality. To illustrate the effective-

ness of the methodology, a case study is conducted using an additive

manufacturing system.

In comparison to existing methods that disregard the liveliness of the

model, their created approach outperforms them by dynamically updat-

ing itself, accurately inferring quality deviations, and precisely localizing

abnormal faults within the additive manufacturing system.

4 Digital Twins architecture

The objective of the article "Towards a Requirement-driven Digital Twin Ar-

chitecture", as it is mentioned in its title, is to propose a new architecture for

DT that is driven by requirements. Since DT can be used to simulate, predict,

and optimize the behavior of the physical systems in real-time, its development

and realization of an architecture independently of the use case can be chal-

lenging especially due to the need for accurate data, modeling, and simulation.

To address these challenges, the authors propose a requirement-driven ap-

proach to the design of DT architectures. This approach emphasizes the im-

portance of understanding and defining the requirements of the physical system

before developing the DT. The authors suggest that a set of requirements can
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serve as the basis for the DT architecture, and that this architecture can be

designed to meet these requirements.

The provided comprehensive and practical approach to the development of DT

architectures that can be used to support a range of applications and industries

will be presented in the next subsection.

As mentioned, The paper proposes a conceptual framework for the develop-

ment and deployment of CDT in production systems. This framework provides

a systematic approach for integrating DT technology into production systems

and can help practitioners and researchers to implement DT in a systematic

and effective manner.

This conceptual framework is presented in Figure 3.11.

Figure 3.11: Exemplary DT architecture.
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5 Framework CSDT

Taking into consideration the following mentioned points:

• Level of granularity: System Twin.

• Use AI for Diagnostic and Predictive Analytics.

• The creation of a static DT.

By remaining faithful faithful to the above points, a CSDT can be created, this

term that is created to represent the framework that can not only replicate

the PT actions, what makes it a super-DT is its ability to generate disturbed

data and functions to make it more resilient to future problems rather waiting

for it to occur.

5.1 Conclusion

In conclusion, this state-of-the-art analysis and different reviews on the present

articles has shed light on the power Digital Twins and Cognitive Digital Twins.

Through an exploration of definitions, current research, and practical applica-

tions, it is evident that Digital Twins offer significant benefits for resilience in

various domains.

Further experimental work will be emphasizing on :

• Create an Edge/Fog System of Sytems Architecture adapted to the prob-

lem and use-case presented.

• Use RNN for a classification problem.

• Prove that Decision Trees perfom better o tabular data.

• Create a Digital Twin adapted perfectly to the physical twin.

• Generate perturbations and anomalies to make it a super-DT.
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Overall, this state-of-the-art analysis highlights the need for continued re-

search, innovation, and investment in Digital Twin technologies. With further

advancements and integration into real-world applications, Digital Twins have

the potential to revolutionize maintenance and resilience practices, leading

to improved operational efficiency, reduced downtime, and increased system

performance.
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Chapter 4
General Conclusion

In this paper, an exploration of the power and potential of Digital Twins as

a preventative and resilience tool was presented, along with relevant defini-

tions and a comprehensive state-of-the-art analysis. However, it is crucial to

acknowledge that while Digital Twins offer numerous benefits, they are not a

one-size-fits-all solution for all maintenance and resilience challenges.

Implementing Digital Twins requires significant investments in terms of data

collection, analytics capabilities, computing power, and the recruitment and

training of skilled personnel. These resources are necessary for ensuring the

proper operation and maintenance of Digital Twins. It is also important to

note that while Digital Twins can provide valuable insights and analysis, they

cannot entirely replace human intuition and expertise in decision-making pro-

cesses. Instead, they should be viewed as a complementary tool that enhances

and augments traditional maintenance practices.

Looking ahead, the forthcoming paper will focus on the realization of a cog-

nitive super-Digital Twin. This advanced version of the Digital Twin concept

not only replicates the physical IoT Twin with precision but also possesses
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the unique capability to detect and generate perturbations for enhanced pre-

vention and resilience strategies. By introducing controlled disruptions and

analyzing their impact, the super-Digital Twin aims to improve the overall

performance and preparedness of systems.

While the cognitive aspect of the super-Digital Twin is a significant component

of its capabilities, the emphasis of the forthcoming work will be primarily on

the perturbations and disruptions introduced by the twin. By investigating the

effects and responses to various perturbations, a deeper understanding of sys-

tem behavior and the development of more effective preventive and resilience

measures can be achieved.
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