

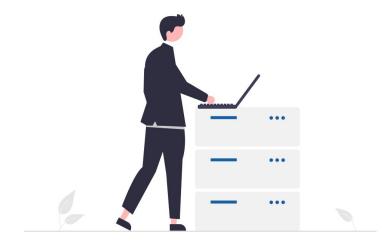
The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and Anomaly Detection

Contributors:

- Meriem Smati
- Boubou Thiam Niang
- Jannik Laval

Presented By:

Meriem Smati


Part I

Section I.1 : Problem Statement, Objectives and Backgrounds

Part I.1: Problem Statement

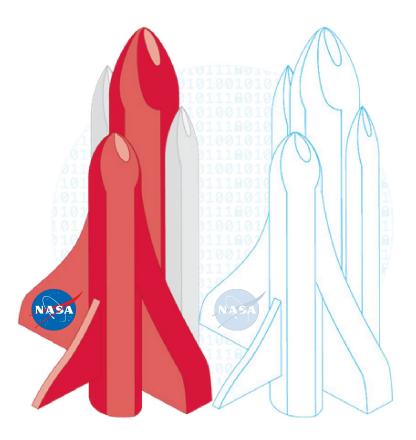
- Resilience.
- Maintenance.
- IoT Systems.

How to use Digital Twins for IoT Systems resilience?

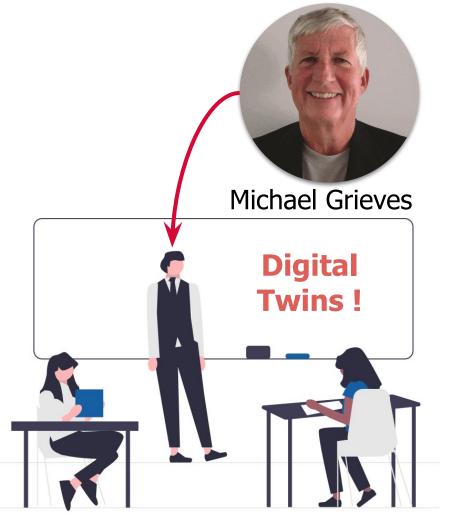
Part I.1: Objectives

- Define the DT's concepts.
- Analyze different articles to create a new improved framework.

Part I.1: Different Involved Domains

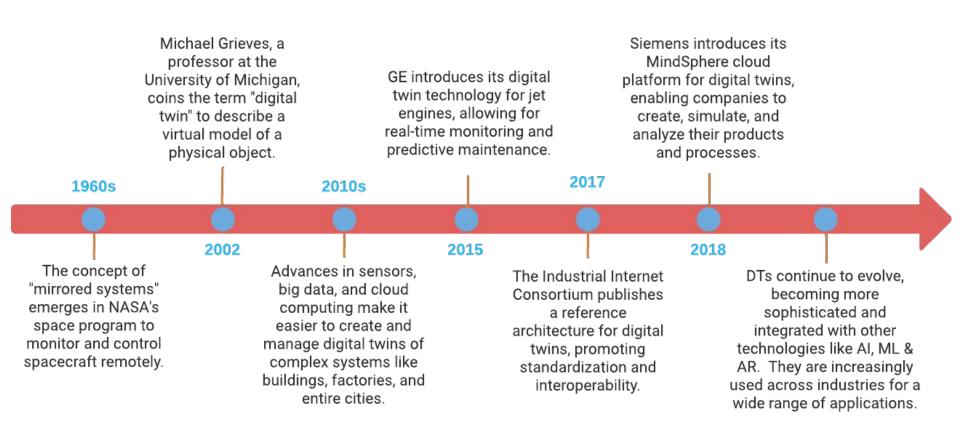

- Internet of Things
- Artificial Intelligence
- Machine Learning
- Deep Learning
- Digital Twins

Part I.1: Digital Twins Background


1970

- The concept of a "Twin" has its roots in the NASA Apollo program of the 1970s.
- Create a replica of space vehicles on Earth.

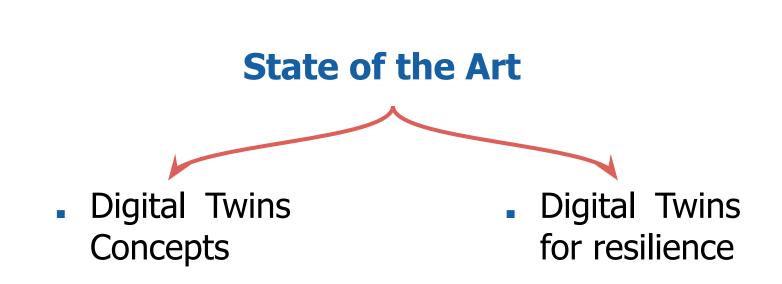
Part I.1: Digital Twins Background


2003

 Michael Grieves proposed the idea of a "Digital Twin" in his Product Life-Cycle Management (PLM) course.

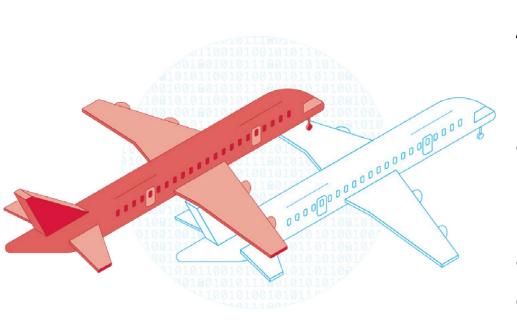
University of Michigan

Part I.1: Digital Twins Background



Section I.2 : State of the Art

Part I.2: State of The Art

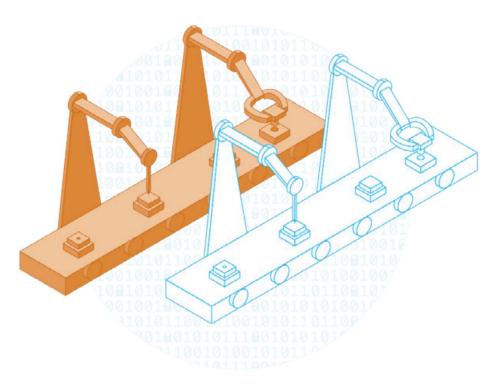


Digital Twin's Definitions

Digital Twins lake a universal definition and highly depend on the use case and the domain of application.

Digital Twin's Definitions

In Aerospace:


DT is an Α integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle that uses the physical models and other relevant information to accurately replicate the life and behavior of its corresponding flying counterpart.

Digital Twin's Definitions

In the Industry:

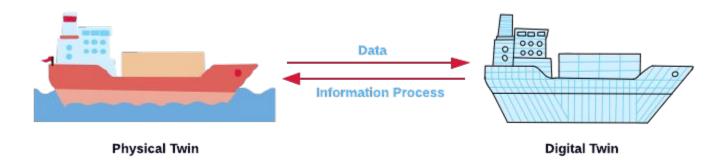
A DT is an evolving digital profile of the historical and current behavior of a physical object that helps optimize business performance. It is based on massive, cumulative, real-time, real-world data measurements across an array of dimensions.

Digital Twin's Definitions

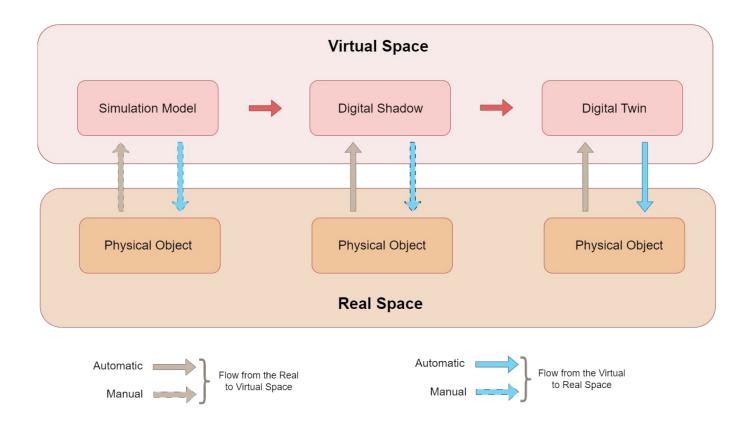
In Engineering:

A DT is a digital replica of physical assets, processes, and systems that can be used for various purposes, such as simulation, optimization, and monitoring.

Digital Twin's Definitions

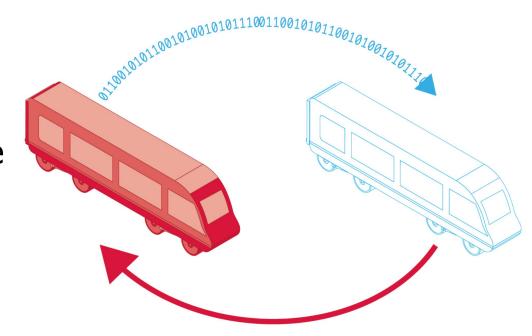

And much more other definitions have been conducted in Healthcare, Manufacturing, Agriculture etc.

Digital Twin's Definitions


We can conclude the following definition for "Digital Twins in the IoT Domain":

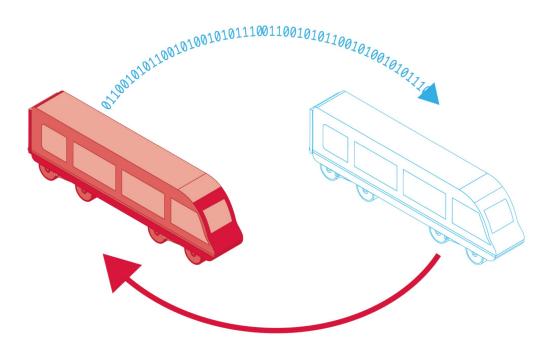
"The combination of virtual machines and computer-based models that enable the simulation, emulation, or mirroring of the behavior and characteristics of a physical entity".

Digital Twin's Predecessors



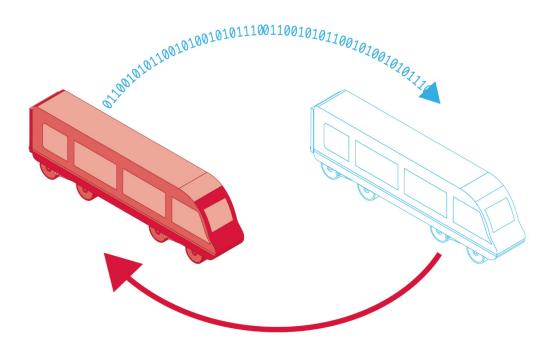
Digital Twin's Components

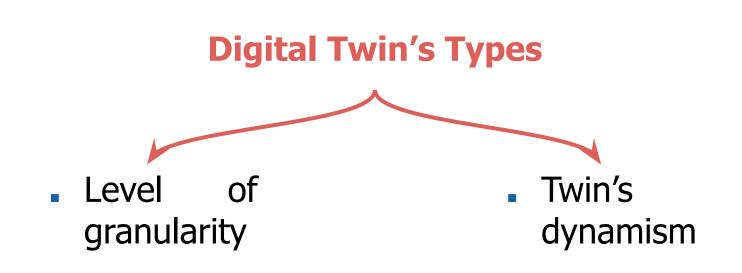
Required Components


- Physical Asset
- Digital Asset
- Continuous Bijective Relation

Digital Twin's Components Optional Components

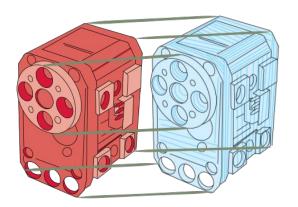
- Time Continuous Data
- Time-series data
- Knowledge Database
- Security
- ML
- Evaluation metrics
- IoT
- etc.




Digital Twin's Components

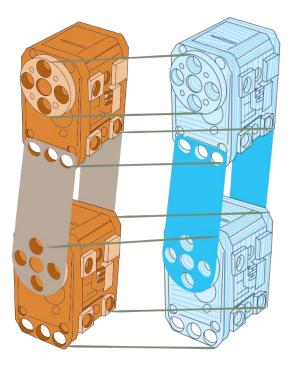
Optional Components

- Time Continuous Data
- Time-series data
- Knowledge Database
- Security
- . ML
- Evaluation metrics
- IoT
- etc.



Digital Twin's Types

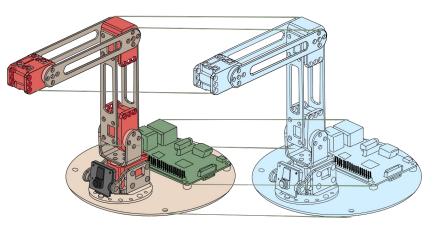
Level of granularity


Components Twins:

The basic unit of a DT and the smallest example of a functioning component.

Digital Twin's Types

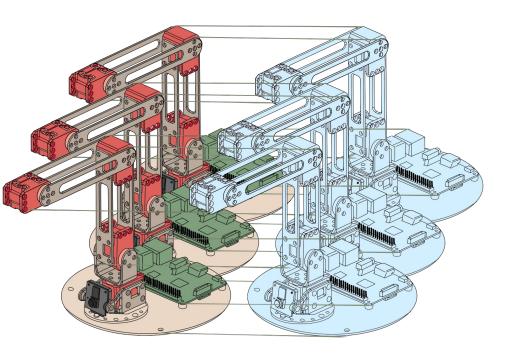
Level of granularity


Assets Twins:

When two or more components work together.

Digital Twin's Types

Level of granularity


System Twins / Unit Twins:

It enables to detect different assets connected to form a whole functioning system.

Digital Twin's Types

Level of granularity

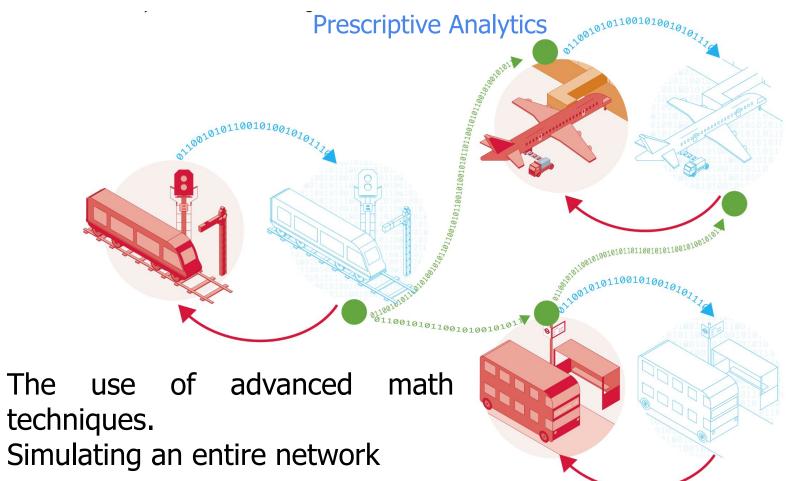
Process Twins:

It is the macro level of magnification. It is the digitalization of entire business processes.

Digital Twin's Types

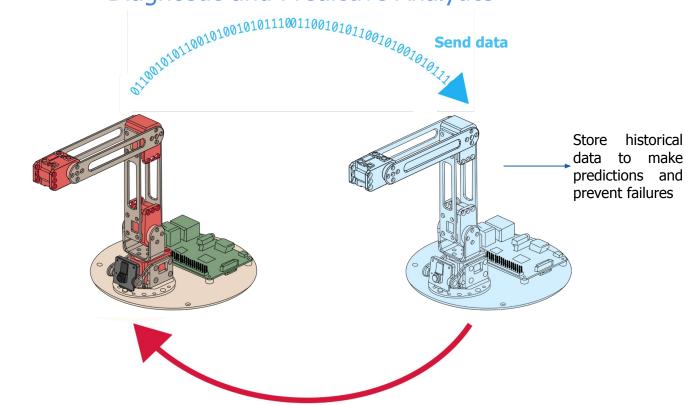
Twin's Dynamism

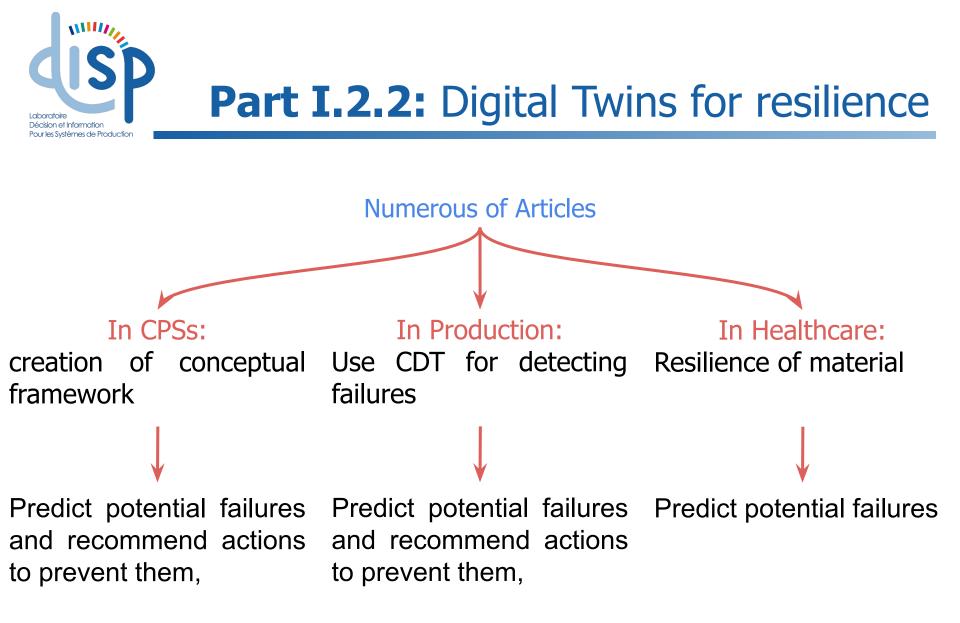
a Dynamic DT:


Fed by live data flows from a physical asset. Insights and programmed instructions from the digital twin can then impact the physical twin using real-time control mechanisms.

a Static DT:

Changes periodically as long-term data about a physical asset are added in.


Digital Twins with ML and DL Two widely used ML areas in DT



Digital Twins with ML and DL Two widely used ML areas in DT

Diagnose potential problems and predict future behaviors of the system.

Part I.2.2: Digital Twins for resilience

Contribution

Creation of a CSDT

Cognitive Super-Digital Twin

Part II

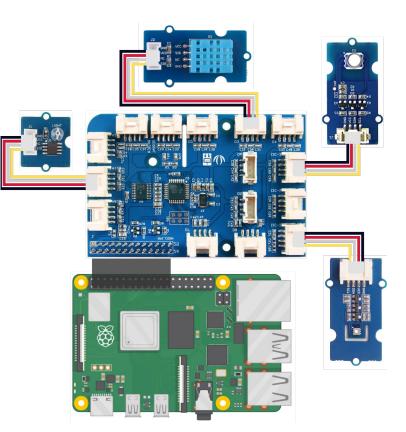
Section II.1 : Realization

Part II.1.1: Use case

The scenario involves an IoT system aligned with the Physical Twin, featuring a total of four sensors that help detect whether the room is occupied or not:

- A temperature sensor.
- A humidity sensor.
- A light sensor.
- A CO2 sensor.

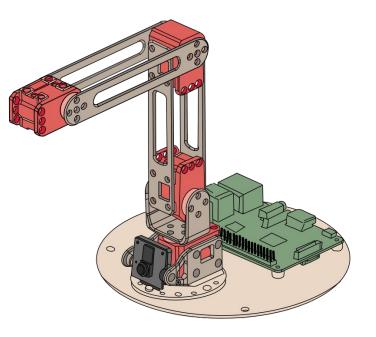
Each Sensor corresponds to a feature in the external dataset (Occupancy Detection Dataset).


The robot poppy ergo jr moves depending on the result of the model and the collected data.

Part II.1.2: Used Hardware and Technologies

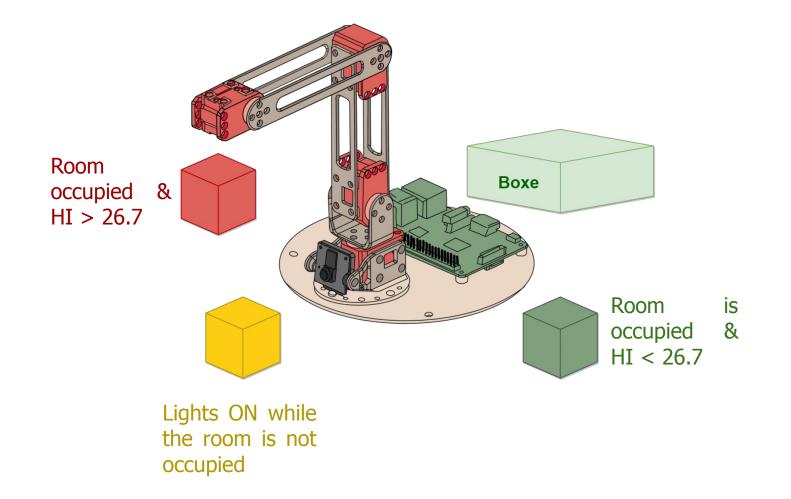
First subsystem

- Raspberry Pi 3 Model B.
- GrovePi+ add-on board.
- Grove Temperature & Humidity Sensor (DHT11).
- Grove Barometer (High-Accuracy)
- Grove Light Sensor.
- Grove VOC and eCO2 Gas Sensor (SGP30).



Part II.1.2: Used Hardware and Technologies

Second Subsystem - Poppy Ergo Jr


- Raspberry Pi 3 Model B.
- Six motors.
- 3D printed parts.

Part II.1.2: Used Hardware and Technologies

Second Subsystem - Poppy Ergo Jr

 $c_{1},$

Part II.1.2: Used Hardware and Technologies

 $c_1 = -8.78469475556$

Second Subsystem - Poppy Ergo Jr

$HI = c_1 + c_2 \cdot T + c_3 \cdot RH + c_4 \cdot T \cdot RH$	$c_2 = 1.61139411$
$+ c_5 \cdot T^2 + c_6 \cdot RH^2 + c_7 \cdot T^2 \cdot RH$	$c_3 = 2.33854883889$
$+ c_8 \cdot T \cdot RH^2 + c_9 \cdot T^2 \cdot RH^2$	$c_4 = -0.14611605$
where:	$c_5 = -0.012308094$
HI is the Heat Index	$c_6 = -0.0164248277778$
T is the temperature in Celsius	$c_7 = 0.002211732$
RH is the relative humidity in percentage	$c_8 = 0.00072546$
$, c_2, \ldots, c_9$ are the coefficients specific to the equation	$c_9 = -0.000003582$
	0.0000000

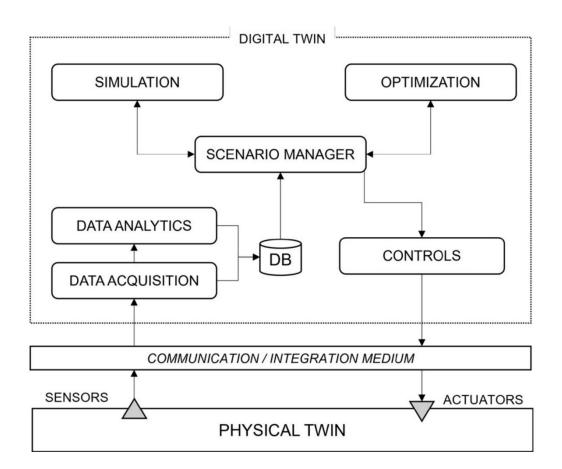
Part II.1.2: Used Hardware and Technologies

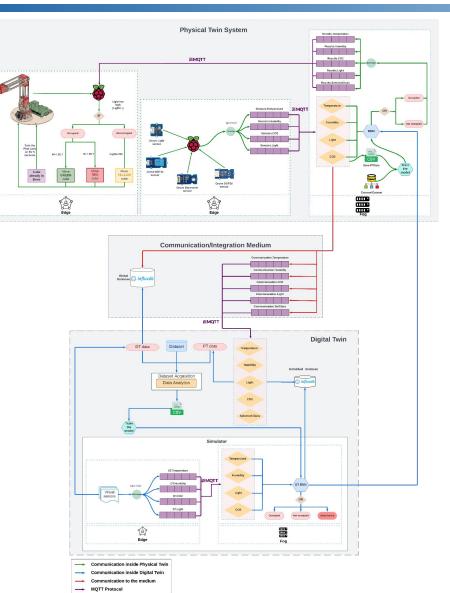
RabbitMQ - MQTT

 It is an extension to RabbitMQ that enables support for the MQTT protocol. MQTT is a lightweight messaging protocol designed for efficient communication between devices or client applications in constrained or unreliable networks.

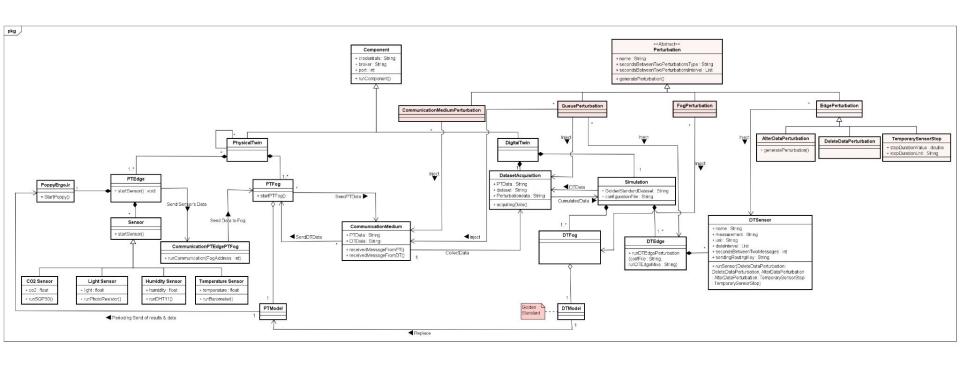
RabbitMQ MQTT

InfluxDB

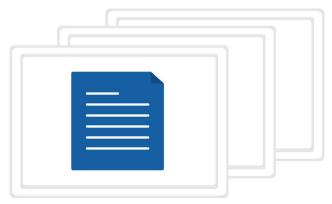

 Open-source time series database written in Go programming language for storing and retrieving time series data.


Part II.1.3: General Architecture

Inspired from:

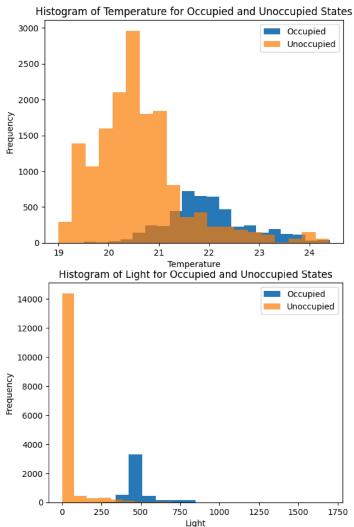


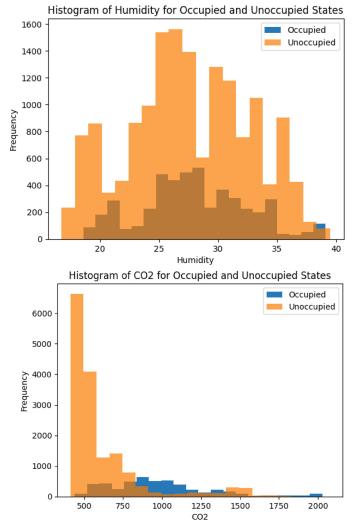
Part II.1.3: General Architecture


Part II.1.3: Class Diagram

The Digital Twin has Three sources of data:

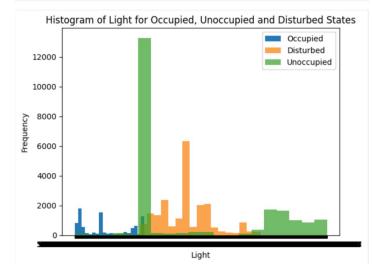
- External Dataset (Occupancy Detection Dataset).
- Physical Twin's Data.
- Disturbed Data.


External Dataset

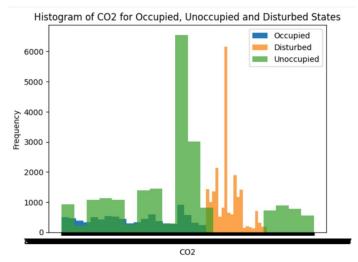

Date	Temperature	Humidity	Light	CO2	Occupancy
2015-02-02 14:19:00	23.7	26.272	585.2	749.2	1
2015-02-02 14:19:59	23.718	26.29	578.4	760.4	1
2015-02-02 14:21:00	23.73	26.23	572.66	769.66	1
2015-02-02 14:22:00	23.7225	26.125	493.75	774.75	1
2015-02-02 14:23:00	23.754	26.2	488.6	779	1

University of California Irvine - Machine Learning Repository

External Dataset



Physical Twin's Dataset


Date	Temperature	Humidity	Light	CO2	Occupancy
2023-06-09 15:33:00	26.12	17.0	766.0	809.0	1
2023-06-09 15:33:33	26.18	17.2	766.0	808.4	1
2023-06-09 15:34:03	25.73	18.23	572.66	769.66	1
2023-06-09 15:34:25	25.74	18.125	600.75	774.75	1
2023-06-09 15:35:06	25.754	17.2	568.6	779	1

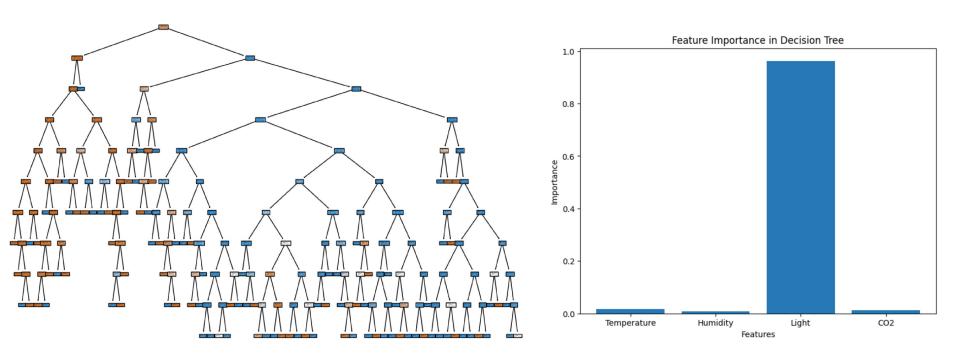
Physical Twin's Dataset Histogram of Temperature for Occupied, Unoccupied and Disturbed States 4000 Occupied Unoccupied 3500 Disturbed 3000 2500 2r 1500 1000 500 0 233 Temperature

Histogram of Humidity for Occupied, Unoccupied and Disturbed States Occupied Unoccupied 5000 Disturbed 4000 Frequency 3000 2000 1000 0 Humidity

Disturbed Data

```
•••
```

```
"Sensor name":"Temperature 1",
"Measurement": "Temperature",
"topic":"DT/temperature",
"Unit":"°C",
"Data type":"double",
"DTData":[
   {
      "Occupancy": 0,
     "Data Interval":[19.1,24.39]
      "Occupancy": 1,
      "Data Interval":[20.29,26]
  },
      "Occupancy": 2,
      "Data Interval":[
         [-100,10],
        [50,1000]
      1
```

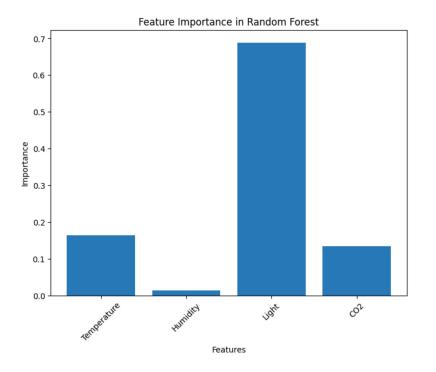


Train ML & DL models on the External dataset.

- Decision Trees.
- Random Forests.
- KNN.
- Naive Bayes.
- RNN.
- MLP.

The training is done either with GridSearch or RandomSearch

Physical Twin - Decision Tree

• Accuracy: 99.14%

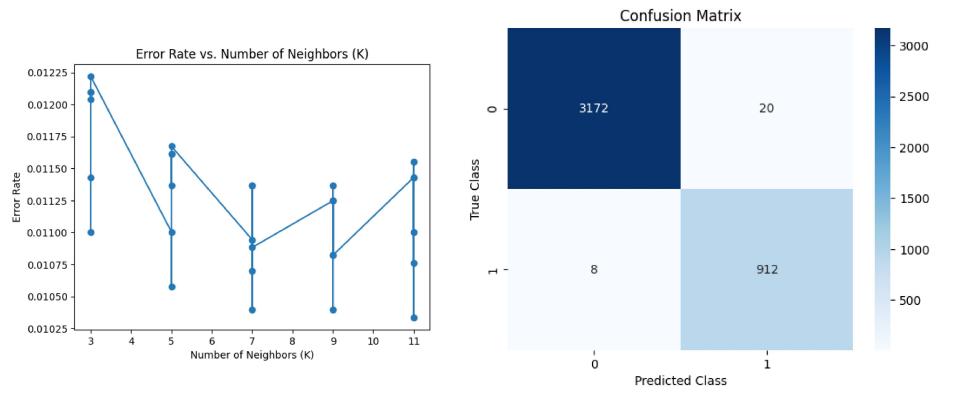

• Precision: 97.73%

• Recall: 98.47%

• F1_Score: 98.10%

Physical Twin - Random Forest

• Accuracy: 99.34%

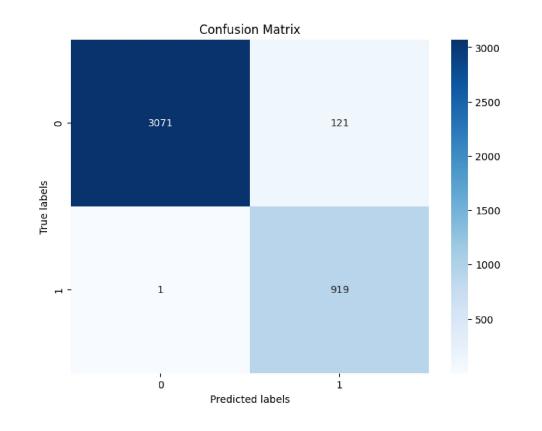

• Precision: 97.85%

• Recall: 98.23%

• F1_Score: 98.54%

Physical Twin - KNN

• Accuracy: 99.31%

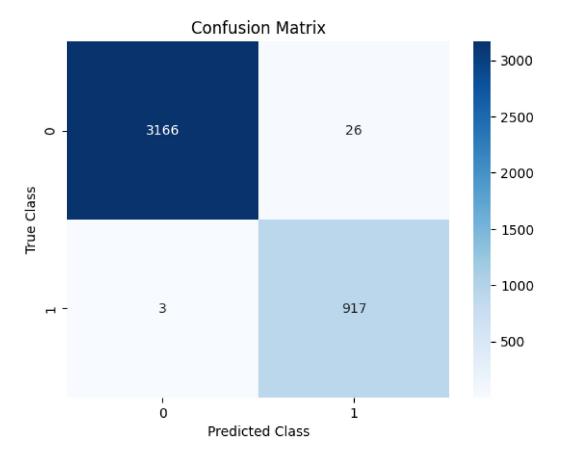

• Precision: 97.85%

• Recall: 99.13%

• F1_Score: 98.48%

Physical Twin - Naive Bayes

• Accuracy: 97.03%

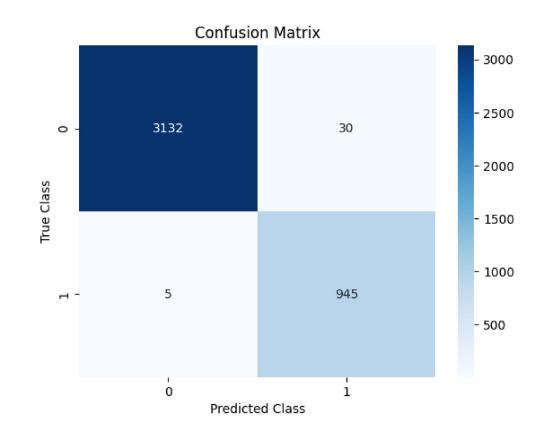

• Precision: 98.36%

• Recall: 99.89%

• F1_Score: 93.77%

Physical Twin - MLP

• Accuracy: 97.27%

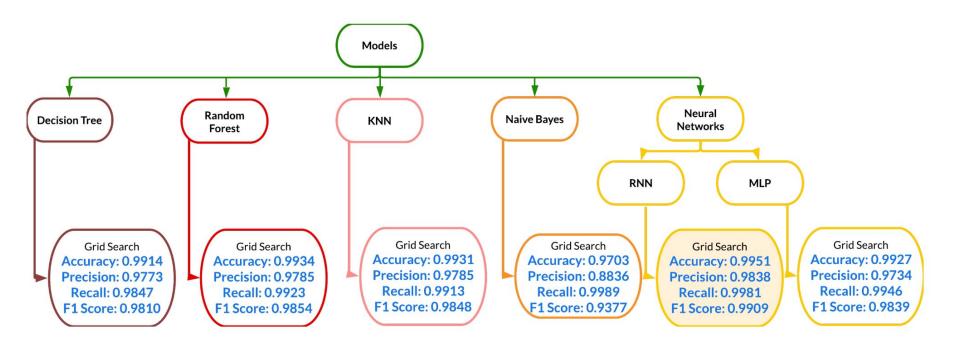

• Precision: 97.34%

• Recall: 99.46%

• F1_Score: 98.39%

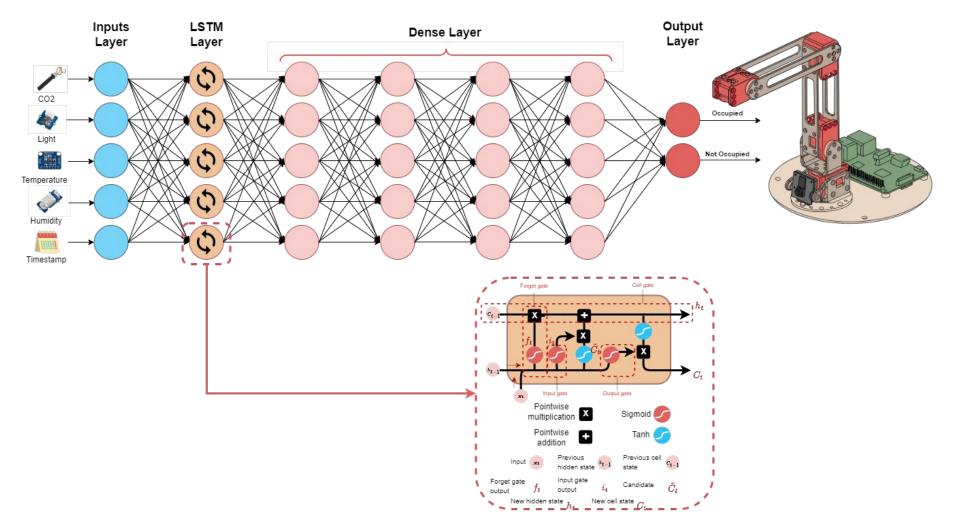
Physical Twin - RNN

• Accuracy: 99.51%

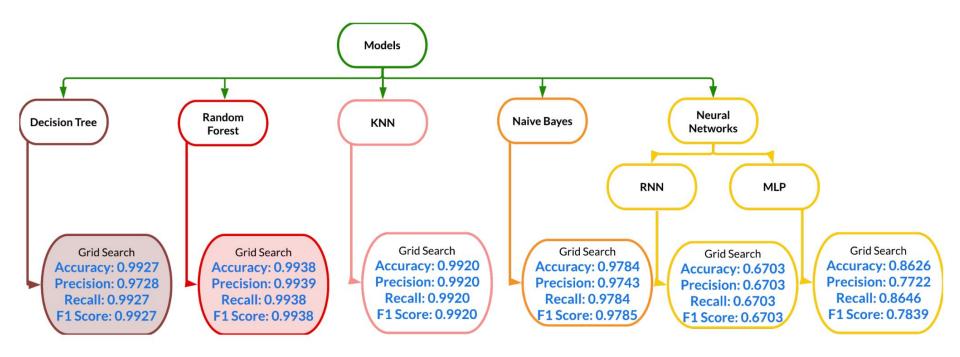

• Precision: 97.38%

• Recall: 99.81%

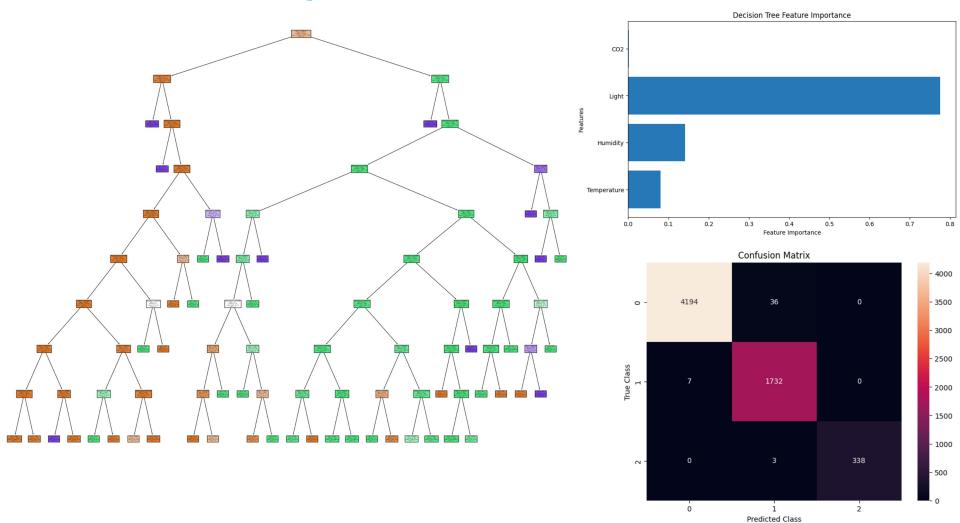
• F1_Score: 98.09%



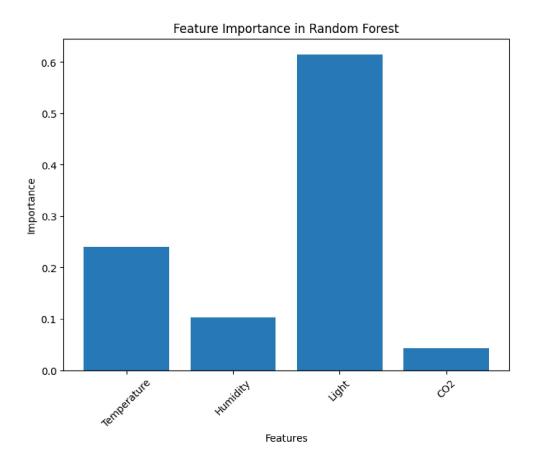
Physical Twin's Models

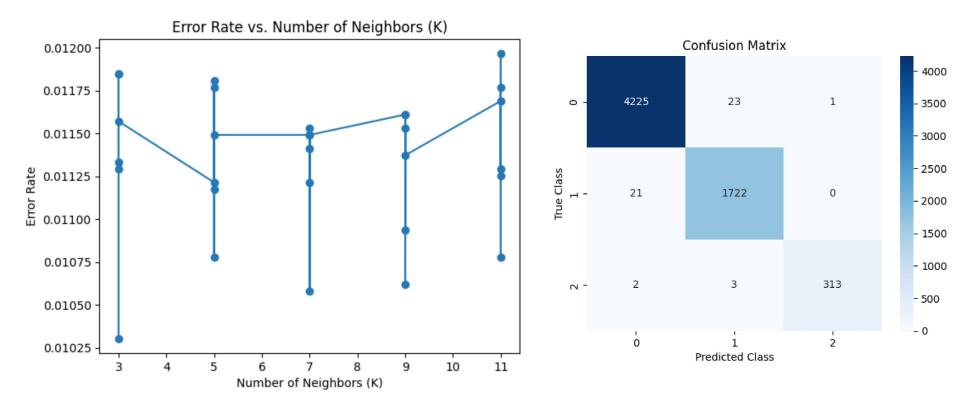

Physical Twin's Selected Model

Part II.4: Selecting a Model for the Digital Twin


Digital Twin's Models

Part II.4: Selecting a Model for the Digital Twin


Physical Twin - Decision Tree

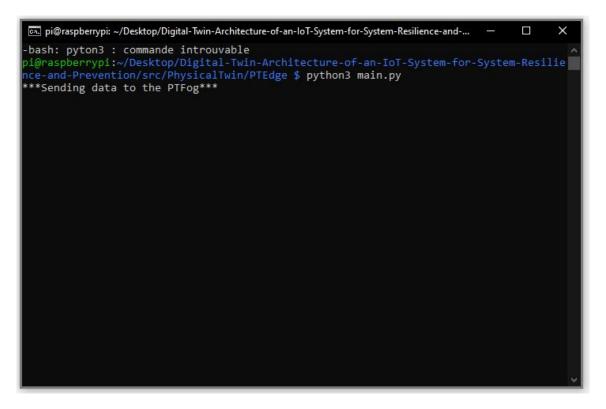

Part II.4: Selecting a Model for the Digital Twin

Physical Twin - Random Forest

Physical Twin - KNN

Decision Trees perform better on tabular data.

Section II.2 : Implementation



Starting the Database

🔤 C\Windows\System32\cmd.exe - influxd — 🗖 🗙
C:\Users\msmat\Documents\InfluxData\influxdb\influxdb-1.8.10-1>influxd
8888888 .d888 888 888888b. 888888b.
888 d88P" 888 888 "Y88b 888 "88b
888 888 888 888 888 888 888 889
888 8888b. 888888 888 888 888 888 888 88
888 888 "88b 888 888 888 888 Y8bd8P' 888 888 888 "Y88b
888 888 888 888 888 888 X88K 888 888 888
888 888 888 888 888 888 788b 888 .d8"8b, 888 .d8"8b, 888 .d88P
8888888 888 888 888 "Y88888 888 888 888
2023-06-12T15:32:01.898103Z info InfluxDB starting {"log id": "0i03blvW000", "version": "1.8.10", "branch": "1.8", "commit": "688e697c51fd"}
2023-06-12115:32:01.992091Z info Goruntime {"log id": "0103bl/w000", "version": "10.113.8", "maxprocs": 8}
2023-06-12115:32:00/007876Z info Using data dir { "log id": "0103bl/W000", "service": "store", "path": "C:\Users\msmat\\.influxdb\\data"}
2023-06-12115:32:02.008370Z info Compaction settings {"log id": "0103b1VW000", "service": "store"; "max concurrent compactions: 4, "throughput bytes per
second": 50331648, "throughput bytes per second burst": 50331648}
2023-06-12T15:32:02.0100667 info Open store (start) {"log id": "0iO3blvW000", "service": "store", "trace id": "0iO3bmMW000", "op name": "tsdb open", "op
event": "start"}
2023-06-12T15:32:02.175985Z info Opened file {"log_id": "0i03blvW000", "engine": "tsm1", "service": "filestore", "path": "C:\\Users\\msmat\\.influxdb\\da
ta\\PTDT_Interactions\\autogen\\21\\000000002-000000002.tsm", "id": 0, "duration": "0.850ms"}
2023-06-12T15:32:02.176481Z info Opened file {"log_id": "0i03blvW000", "engine": "tsm1", "service": "filestore", "path": "C:\\Users\\msmat\\.influxdb\\da
ta\\PTDT_Interactions\\autogen\\23\\000000009-000000002.tsm", "id": 0, "duration": "0.495ms"}
2023-06-12T15:32:02.290286Z info Opened shard {"log_id": "0iO3blvW000", "service": "store", "trace_id": "0iO3bmMW000", "op_name": "tsdb_open", "index_vers
ion": "inmem", "path": "C:\\Users\\msmat\\.influxdb\\data\\PTDT_Interactions\\autogen\\8", "duration": "147.962ms"}
2023-06-12T15:32:02.290286Z info Opened shard {"log_id": "0i03blvW000", "service": "store", "trace_id": "0i03bmMW000", "op_name": "tsdb_open", "index_vers
ion": "inmem", "path": "C:\Users\\msmat\\.influxdb\\data\\PTDT_Interactions\\autogen\\23", "duration": "148.404ms"}
2023-06-12715/32:02.290286Z info Opened shard {"log_id": "0i03blWW000", "service": "store", "trace_id": "0i03bmWW000", "op_name": "tsdb_open", "index_vers
ion": "inmem", "path": "C:\\Users\\msmat\\.influxdb\\data\\PTDT_Interactions\\autogen\\2", "duration": "148.377ms"} 2023-06-12T15:32:02.290286Z info Opened shard {"log id": "0i03blvW000", "service": "store", "trace id": "0i03bmMW000", "op name": "tsdb open", "index vers
<pre>2023-0012113.202.202202 into opened sharu { log_id . 0103010000 ; service . store : o10250100000 ; op_name . csuc_open ; intex_vers ion: "immem," opth:" c:\\Users\\msmat\\influxd\\data\PTDT Interactions\\autogen\l44, "duration:" "148.377ms"}</pre>
2033-06-12715:32:0222902862 info Opened shard {'log_id': "0i03b1wW000', "service": "store_id": "0i03bnWW000", "op_name": "tsdb_open", "index_vers
ion": "inmem", "path": "c:\Users\\msmat\\influxdb\\data\PTDT Interactions\\autogen\\21", "duration": "148.957ms"}
2023-06-12T15:32:02.290286Z info Opened shard {"log_id": "0i03blvW000", "service": "store", "trace_id": "0i03bmMW000", "op_name": "tsdb_open", "index_vers
ion": "inmem", "path": "C:\\Users\\msmat\\.influxdb\\data\\PTDT_Interactions\\autogen\\19", "duration": "149_711ms"}
2023-06-12T15:32:02.290286Z info Opened shard {"log_id": "0i03blvW000", "service": "store", "trace_id": "0i03bmMW000", "op_name": "tsdb_open", "index_vers
ion": "inmem", "path": "C:\\Users\\msmat\\.influxdb\\data\\PTDT_Interactions\\autogen\\11", "duration": "149.711ms"}
2023-06-12T15:32:02.326279Z info Opened file {"log_id": "0i03blvW000", "engine": "tsm1", "service": "filestore", "path": "C:\\Users\\msmat\\.influxdb\\da
ta_internal\\monitor\\25\\000000001-000000001.tsm", "id": 0, "duration": "1.994ms"}
2023-06-12T15:32:02.326279Z info Reading file {"log_id": "0i03blvW000", "engine": "tsm1", "service": "cacheloader", "path": "C:\\Users\\msmat\\.influxdb\\
wal_internal\\monitor\\26_00001.wal", "size": 5558418}
2023-06-12115:32:02.342784Z info Opened shard {"log_id": "003blW0000", "service": "store", "trace_id": "013bmMW000", "op_name": "tsdb_open", "index_vers
ion": "inmem", "path": "C:\\Users\\msmat\\.influxdb\\data_internal\\monitor\\25", "duration": "52.497ms"}

Sub-System 1 - Raspberry Pi Physical Twin's Edge

Collecting the data and send it to its corresponding Fog.

Sub-System 1 - Raspberry Pi Physical Twin's Fog

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL	\triangleright Python + \sim	□ @ ··· ^ ×		
<pre>re names, but DecisionTreeClassifier was fitted with feature names warnings.warn(1 round: 1 C:\Users\msmat\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\base.py:439: UserWarning re names, but DecisionTreeClassifier was fitted with feature names warnings.warn(1 round: 0</pre>	g:X does not∣	have valid featu		
<pre>***Sending results to the second Edge Poppy Ergo Jr*** Send data to Poppy Ergo Jr C:\Users\msmat\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\base.py:439: UserWarning: X does not have valid featu re names, but DecisionTreeClassifier was fitted with feature names warnings.warn(1</pre>				
round: 10 C:\Users\msmat\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\base.py:439: UserWarning: X does not have valid featu re names, but DecisionTreeClassifier was fitted with feature names warnings.warn(1				
Ln 5, Col 12 Spaces: 4 UTF-8 CRLF { Pyt	thon 3.9.13 64-bit	ବ୍ଦ Go Live 🔗 🗘		

Infos v4.0.1

Sub-System 2 - Poppy Ergo Jr

роррч

Edit View Insert Cell Kernel Widgets Help	Not Trusted Python 3 (ipykernel)	
+ 3% 42 ₺ ↑ ↓ ▶ Run ■ C > Code ∨ 📼		
Waiting for the results from PTFog		
29.0		
15.0		
769.0 6136.0		
1.0		
29.0		
15.0		
770.0		
6136.0		
1.0		
29.0		
15.0		
770.0		
6089.0 1.0		
29.0		
15.0		
770.0		
6089.0		
1.0		
30.0		
15.0		
770.0		
6089.0 1.0		
30.0		
15.0		
770.0		
6089.0		
1.0		
30.0		
15.0		
769.0 6089.0		
1.0		
30.0		
15.0		
769.0		
6089.0		
1.0		

Digital Twin

DT Edge	DT Fog
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL	⊵ py + ~ □ ₪ ··· ^ ×
247.34149064368398 Those are the generated data of DT 33.63236455861416 23.464627191302746 673.7545374925314 145.20956160516477 Those are the generated data of DT 24.1664632667842 23.81793461473127 762.7104619575682 178.84307145331368 Those are the generated data of DT 31.112292124008555 21.852497399386294 252.43738186161906 114.83651248562569	31.112292124008555 23.81793461473127 762.7104619575682 178.84307145331368 31.112292124008555 21.852497399386294 762.7104619575682 178.84307145331368 31.112292124008555 21.852497399386294 762.738186161906 178.84307145331368 31.112292124008555 21.852497399386294 252.43738186161906 178.84307145331368 31.112292124008555 21.852497399386294 252.43738186161906 178.84307145331368 31.112292124008555 21.852497399386294 252.43738186161906 114.83651248562569
	Ln 4, Col 24 Spaces: 4 UTF-8 CRLF {

Part II.2.52: Prospective Endeavors

- Change the type of the used DT from a static twin to a dynamic one where data and responses are done in real-time.
- Change the level of granularity from a system twin to a process twin.
- Develop the use case and include reinforcement learning.
- Find a solution to include different environments in the use case to not have the problem of different distributed data.
- Add a cloud layer to upgrade the architecture to an Edge/Fog/Cloud and deal with big data.

Thank you!