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Abstract
The concept of Digital Twins (DTs) has progressed to encompass cognitive abili-

ties, resulting in the emergence and appearance of Cognitive Digital Twins (CDTs).

CDTs are virtual representations of tangible or physical systems that have been

enhanced with cognitive capabilities to carry out independent activities and au-

tonomous tasks. They consist of a collection of interconnected digital models that

can handle various types of data and descriptive and simulation models. The idea

of CDTs enhances the cognitive capabilities of DTs using semantic technologies, en-

abling them to become more intelligent, all-encompassing, and capable of providing

a complete representation of complex systems throughout their entire life cycle.

In this Engineering degree report, the main aspects and appliance of Digital

Twin (DT) in resilience and anomaly detection based Machine Learning and Deep

Learning approaches have been presented in the form of a a state of the art and led

to the presentation of an experimental work that consists of developing a Cognitive

Super-Digital Twin (CSDT) which not only replicates the actions of a system but

also generates perturbations and anomalies as a means to bolster the system’s secu-

rity and ensure its continuity. It can identify vulnerabilities and devise appropriate

countermeasures. This proactive approach enables the system to adapt and fortify

its security measures, mitigating potential risks and ensuring uninterrupted opera-

tion.

Keywords: Digital Twins; Cognitive Digital Twins ; Artificial Intelligence;

Machine Learning; Deep Learning; Internet of Things; Resilience;
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Résumé
Le concept des Jumeaux Numériques (DT, pour Digital Twins) a évolué pour

inclure des capacités cognitives, conduisant à l’émergence des Jumeaux Numériques

Cognitifs (CDT, pour Cognitive Digital Twins).

Les CDTs sont des représentations numériques de systèmes physiques augmen-

tées de capacités cognitives pour exécuter des activités autonomes. Ils comprennent

un ensemble de modèles numériques sémantiquement interconnectés qui permettent

de lier et récupérer des données hétérogènes, ainsi que des modèles descriptifs et de

simulation. Le concept de CDT améliore les capacités cognitives des DT grâce aux

technologies sémantiques, ce qui les rend plus intelligents, complets et capables de

représenter l’ensemble du cycle de vie des systèmes complexes.

Dans ce rapport de diplôme d’ingénieur, les principaux aspects et applications

des DT dans la résilience et la détection d’anomalies basées sur des approches

d’apprentissage automatique et d’apprentissage profond ont été présentés sous la

forme d’un état de l’art. Cela a conduit à la présentation d’un travail expérimental

consistant à développer un CDT qui, non seulement reproduit les actions d’un sys-

tème, mais génère également des perturbations et des anomalies afin de renforcer

la sécurité du système et garantir sa continuité. Il peut identifier les vulnérabilités

et élaborer des contre-mesures appropriées. Cette approche proactive permet au

système de s’adapter et de renforcer ses mesures de sécurité, atténuant les risques

potentiels et assurant un fonctionnement ininterrompu.

Mots Clés: Jumeaux numériques ; Jumeaux numériques cognitifs ; Internet des

objets ; Résilience ; IA ; Apprentissage automatique ; Apprentissage profond
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 ملخص 
 
 

La traduction est trop longue pour être enregistrée 

( ليشمل القدرات المعرفية ، مما أدى إلى ظهور التوائم الرقمية المعرفية DTsتطور مفهوم التوائم الرقمية )

(CDTs.) 

 

CDTs  .هي تمثيلات رقمية للأنظمة المادية التي يتم تعزيزها بالقدرات المعرفية لتنفيذ الأنشطة المستقلة

وهي تتألف من مجموعة من النماذج الرقمية المترابطة لغويًا والمتعلقة بربط واسترجاع البيانات غير 

باستخدام  DTsت الإدراكية لـ القدرا CDTالمتجانسة ، فضلاً عن النماذج الوصفية والمحاكاة. يعزز مفهوم 

التقنيات الدلالية ، مما يمكّنهم من أن يكونوا أكثر ذكاءً وشموليةً ، ويوفر تمثيلاً كاملاً لدورة الحياة للأنظمة 

 المعقدة.

 

في مناهج  Digital Twin (DT)في تقرير الدرجة الهندسية هذا ، تم تقديم الجوانب والأجهزة الرئيسية لـ 

والتعلم العميق القائمة على المرونة والكشف عن الشذوذ في شكل حالة من الفن وأدت إلى تقديم التعلم الآلي 

( الذي لا يكرر فقط إجراءات CSDTعمل تجريبي التي تتكون من تطوير التوأم الرقمي الفائق المعرفي )

مراريته. يمكنه تحديد النظام ولكنه أيضًا يولد الاضطرابات والشذوذ كوسيلة لتعزيز أمن النظام وضمان است

 نقاط الضعف واستنباط التدابير المضادة المناسبة. يمكّن هذا النهج الاستباقي النظام من تكييف تدابيره الأمنية 

 وتعزيزها ، وتخفيف المخاطر المحتملة وضمان التشغيل دون انقطاع.

 

الأشياء؛ الذكاء الاصطناعي؛ التعلم  التوائم الرقمية. التوائم الرقمية المعرفية. انترنت الكلمات الرئيسية:

 الذكاء الاصطناعي؛ التعلم الالي؛ تعلم عميق الالي؛ تعلم عميق.
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1 Context

Since its inception, and with the introduction of new technologies like 5G, Artificial

Intelligence (AI), and edge computing, the IoT has undergone continuous develop-

ment, becoming more powerful and capable of revolutionizing business operations.

As the use of IoT devices in businesses has grown, the importance of enhancing

their resilience and maintenance has become indispensable. These devices need to

maintain optimal and secure functionality, even in the face of disruptions such as

cyber-attacks, power outages, and physical damage. Given the increasing number

of connected devices and the data they generate, it is crucial for businesses to have

systems and processes in place to manage and sustain these devices.

One approach to enhance the resilience of IoT systems and prevent disasters is

to design the infrastructure and industrial systems with redundancy and failover

mechanisms. Redundancy involves incorporating backup devices, networks, or data

centers into the system, ensuring that if one component fails, the system can con-

tinue to operate. However, implementing this approach necessitates a significant

investment of financial and human resources. As an alternative to relying solely on

redundancy, the use of DT has been employed.

2 Problem Statement

Maintenance and resilience play a crucial role and a have high importance in

the functioning of any system or asset, regardless of its complexity, whether it’s a

simple household appliance or a sophisticated manufacturing plant or transportation

network. Effective maintenance practices are essential to ensure smooth operations,

minimize downtime, mitigate the risk of failures, and improve overall efficiency. On

the other hand, resilience refers to a system’s ability to withstand disruptions or
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shocks and quickly recover while preserving its essential functions and capabilities.

However, traditional maintenance methods are often reactive, focusing on fixing

problems after they have already occurred rather than preventing them proactively.

This reactive approach can be time-consuming, expensive, and not always effec-

tive in identifying and preventing failures, especially in intricate and interconnected

systems. Additionally, the growing complexity of systems and equipment, along

with the increasing demand for reliability and efficiency, adds further challenges to

maintenance and resilience efforts.

3 Objectives

In this paper, we aim to:

• Explain and present the concepts and principles of DTs, which possess a highly

adaptable nature to cater to the specific requirements of their intended use

cases.

• Evaluate and compare different methodologies utilized in the development of

DTs and their application in the realm of resilience.

• Introduce the framework that is presented as CSDT and its implementation.

4 Thesis Organization

The given work is organized into four chapters, which are outlined as follows:

• Chapter 1 « General Introduction » : In this first chapter, we provide a

contextual analysis and explicate the problem statement and objectives of our

study.

• Chapter 2: « Background and Definition » : This second chapter aims

to provide a comprehensive overview of the various components which are
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pertinent to the topic at hand.

• Chapter 3: « State of the Art » : This third chapter procures a compre-

hensive analysis of the various works examined, followed by a detailed discus-

sion of each approach, culminating in a comparative study and synthesis.

• Chapter 4: « Contribution » : This part represents the culmination of

the research conducted in this paper and serves as an input to the realized

framework CSDT.

• Chapter 5: « Conclusion » : This final part marks the culmination of the

research conducted and the future perspectives.
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1 IoT

1.1 Introduction

In this section, various definitions, architectures, and components related to the

IoT will be explored. IoT refers to a network where physical devices are inter-

connected and communicate with each other, exchanging data through the inter-

net. These devices encompass a wide range of items, such as smartphones, laptops,

sensors, cameras, and appliances, etc and it has the power to revolutionize numer-

ous industries, including healthcare, transportation, manufacturing, and agriculture.

Frequently, IoT devices are equipped with sensors that gather data, which can be

analyzed to gain valuable insights and support decision-making processes.

1.2 Definition of IoT

IoT or Internet of things, the backbone of the Digital Age, the technology that

has the power and potential to revolutionize numerous industries, has no standard

definition yet. But here are a few definitions that has been collected:

• The term IoT is defined by the International Telecommunication Union (ITU)

as a global infrastructure for the information society that enables the inter-

connection of different assets based on communication technologies. [1]. And

in terms of a network that it is “Available anywhere, anytime, by anything and

anyone" [2].

• ITU-T Study Group 13 leads the work of the ITU on standards for Next-

Generation Networks (NGN) and future networks (ITU, SERIES Y, 2005).

It has defined IoT as: “A global infrastructure for the information society,

enabling advanced services by connecting physical and/or virtual things based

on existing and evolving interoperable information.” [2]
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• In [3], it has been defined as “a network of physical objects. The internet has

transformed from being solely a network of computers into a vast network en-

compassing devices of all types and sizes. This includes vehicles, smartphones,

home appliances, toys, cameras, medical instruments, industrial systems, and

even animals. All connected ,all communicating and sharing information based

on stipulated protocols in order to achieve smart reorganizations, positioning,

tracing, safe and control and even personal real time online monitoring , online

upgrade, process control and administration. ”

1.3 Historical Evolution of IoT

The IoT traces its origins back to the early days of the Internet, although it

wasn’t officially defined until 1999 when Kevin Ashton1 coined the term. However,

ideas, research, and studies related to IoT had been present for some time prior to

that.

Since its inception, the IoT has undergone continuous evolution, progressing

through various stages of technological development and expanding into new do-

mains of application. It has grown far beyond being a mere technology and has now

become an integral part of our daily lives, enhancing efficiency and convenience [4].

In a study [5], it is mentioned that one of the earliest instances of an internet-

connected device was a Coke machine at Carnegie Melon University in the early

1980s. Programmers had the ability to connect to the machine via the internet and

remotely monitor its status, check the availability of drinks, and even determine the

temperature of the beverages.

This marked the beginning of the proliferation of interconnected devices. In

the 1990s, the automotive industry pioneered the use of RFID technology to track

inventory in factories and warehouses. By the early 2000s, there were already early
1Kevin Ashton is a British technology pioneer ans his work in Radio-Frequency IDentifica-

tion (RFID) technology and supply chain management paved the way for the development of the
Internet of Things.
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examples of IoT applications in sectors such as healthcare and logistics.

Presumably, before 2025, IoT will have a significant impact on daily life. IoT

can be used in Electronic Voting, Electronic Identifications and in Medical Field to

Support Patients. Robots are working in several sections using IoT. Remote sensing

Robots are also Using IoT. IoT based systems are widely used in Farming. Remote

sensing robots are collecting data with IoT protocols. [4]

1.4 Characteristics of IoT

The fundamental characteristics of the IoT are defined in [3] as follows:

Interconnectivity: The global information and communication infrastructure

has the potential to interconnect anything.

Things-related services: The IoT has the potential to offer services pertaining

to tangible objects while considering aspects such as privacy protection and aligning

the virtual and physical aspects of these objects. To accomplish this, modifications

are needed in both the technologies employed in the physical realm and the realm

of information. These alterations are crucial for enabling the provision of services

related to things while adhering to the limitations and demands imposed by physical

objects.

Heterogeneity: The IoT devices exhibit heterogeneity because they operate on

varying hardware platforms and networks, and utilize different networks to commu-

nicate with other devices or service platforms.

Dynamic changes: Devices within the IoT experience dynamic fluctuations in

their states, including transitions between sleep and wake modes, connectivity and

disconnection, and variations in contextual factors like location and speed. Fur-

thermore, the number of devices within the network can also undergo dynamic

fluctuations.

Enormous scale: The number of devices requiring management and intercom-

munication within the IoT is projected to be at least ten times greater than the
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current number of devices connected to the Internet.

Safety: While harnessing the benefits of the IoT, it is vital to pay careful at-

tention to safety issues. As both creators and beneficiaries of the IoT, we must

prioritize safety considerations, which include protecting our personal information

and physical well-being. To ensure comprehensive security, it is necessary to estab-

lish a scalable security framework that can effectively protect endpoints, networks,

and the transmitted data.

Connectivity: The capability to establish connections enables easy accessibility

and compatibility within a network. Accessibility refers to the ability to join a

network, while compatibility refers to the capacity to exchange and utilize data in

a standardized manner.

1.5 IoT Architectures

As mentioned, IoT has brought a significant change in the manner and the

way we interact with physical objects and devices located in our environment. It

facilitates communication and information exchange between them over the internet.

Nevertheless, due to the vast number of devices involved and the complexity of the

network infrastructure required to support them, designing and implementing IoT

architecture is an essential starting point.

There are various and plenty types of IoT architectures, each with its unique

advantages and challenges and depend fully on the corresponding use case and sub-

ject. The choice of architecture relies as well on several other factors beside specific

use case, such as the network topology, the scalability, the reliability, and cost-

effectiveness.

In this subsection, the most common IoT architectures are mentioned:
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1.5.1 The Three and Five Layered Architectures

The article [6] talked about two architectures that are widely used: The three

and five-layered architectures that are represented in Figure 2.1

Figure 2.1: A. IoT layered architecture three layered and B. five layered architecture.

• Perception Layer: The perception layer is composed of a set of group of

objects. These objects act as a bridge between the Physical world and the

digital realm utilizing sensors to capture data. Its main objective is to gather

information from the environment through a range of sensors for example tem-

perature, humidity, light, CO2 sensors, cameras, etc., according to the specific

use case and needs of the application. Researchers are primarily concerned

with ensuring the proper identification, management, and security of these

objects within this layer.

• Transport Layer: The purpose of this layer is to establish secure connec-

tions between objects and facilitate the sharing of information among them.

Different communication protocols such as Ethernet, WiFi, Wi-MAX, ZigBee,
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and Bluetooth Low Energy (BLE) can be used to enable this information ex-

change. However, there are still certain challenges that need to be addressed

at this layer, such as reducing energy consumption in the network, ensuring

Quality of Service (QoS), and adapting to dynamic topologies.

• Service Management Layer: It can also be referred to as "the Middleware

Layer", this level facilitates and enables the integration of diverse and het-

erogeneous devices into IoT applications. Additionally, Moreover, it plays a

pivotal role in processing raw data collected by objects in the perception layer.

This data is typically characterized by its large volume and diverse nature.

• Application Layer: The layer in question is primarily tasked with providing

application-specific and use case-specific services to end-users, that is why it

plays a significant role in enhancing the convenience, safety and overall quality

of life of end-users. However, the ability to tailor services to meet specific

needs and preferences makes this layer critical in the success and adoption

of IoT applications. As such, developers and researchers must continually

work to identify and address the unique challenges associated with providing

application-specific services in this layer.

• Business Layer: The business layer serves as the supervisor of an IoT sys-

tem’s operations and services, utilizing raw data acquired from other layers

to create flow charts, graphs, and business models. Additionally, this layer

is responsible for monitoring, analyzing, and evaluating the IoT system and

its related components. Decision-making is a central activity of the business

layer, as it plays a critical role in determining the direction and success of the

IoT system.
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1.5.2 The Edge Fog Cloud

Edge, fog, and cloud computing are different types of data storage and manage-

ment in IoT.

Edge computing refers to computation at the edge of a device’s network, while

fog computing is an extension of cloud computing that acts as a layer between the

edge and the cloud.

Fog computing is designed to overcome the challenges of edge computing, such

as delays in detection, by processing data in real-time.

The cloud, on the other hand, refers to the on-demand delivery of IT ser-

vices/resources over the internet.

Down below each layer is explained taken from [7].

• Edge:

Edge computing involves processing data locally within the network, specifi-

cally on edge devices and gateways, instead of relying on centralized storage.

By avoiding data transfer to the cloud, it enables quick response times and

unmatched speed.

When it comes to decentralized storage, edge computing stands as the most

secure option. Unlike cloud storage, which distributes data across numer-

ous servers, edge computing employs a vast number of local nodes, potentially

reaching into the thousands. Each device within the edge network can function

as an independent server, making it extremely difficult for hackers to breach.

Gaining synchronized access to thousands of dispersed devices is practically

unattainable.

This distinction also sets fog computing apart from edge computing. Fog

computing serves as a network that connects to the cloud, while edge devices

operate with loose connections and have the ability to act autonomously.
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• Fog:

Fog computing serves as an intermediary layer positioned between the conven-

tional centralized data storage system (cloud) and edge devices. Its purpose is

to extend the capabilities of the cloud by bringing computation and data stor-

age closer to the edge. Fog encompasses multiple nodes, known as fog nodes,

forming a decentralized ecosystem—this stands as the primary contrast be-

tween fog and cloud computing.

When data reaches the fog layer, the individual node determines whether to

process it locally or transmit it to the cloud. Consequently, the data re-

mains accessible even offline since certain portions of it are stored locally.

This presents another significant divergence between fog computing and cloud

computing, as the latter relies on remote servers to execute and store all the

intelligence and computations.

• Cloud:

It is a centralized storage situated further from the endpoints than any other

type of storage. This explains the highest latency, bandwidth cost, and net-

work requirements. On the other hand, cloud is a powerful global solution

that can handle huge amounts of data and scale effectively by engaging more

computing resources and server space. It works great for big data analytics,

long-term data storage and historical data analysis.

2 Internet of Things Resilience

2.1 Introduction

Resilience is the ability of a system to recover from disruptions and continue to

function effectively. In the context of technology, resilience is becoming increasingly

important as our reliance on interconnected systems grows. Disruptions such as
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cyber-attacks, natural disasters, and equipment failures can have significant conse-

quences for businesses and individuals. Resilient systems are designed to minimize

the impact of such disruptions and ensure continuity of service.

2.2 Definition of Resilience

Resilience can be defined as the capacity to adapt, adjust and the ability of

a system to continue operating and delivering services in the face of various and

different types of failures or disruptions, such as hardware or software failures, net-

work outages, cyber attacks, or natural disasters. Resilient computer systems are

designed to anticipate and withstand these challenges, and to recover quickly and

efficiently in the event of a failure or disruption by implementing redundancy, fault

tolerance, and disaster recovery mechanisms, as well as conducting regular testing

and maintenance to ensure that the system remains robust and reliable. Resilience

is a critical attribute of modern computer systems, particularly those that are used

to provide essential services or support critical business operations.

2.3 IoT resilience

In the context of IoT, resilience refers to the capability of IoT systems to main-

tain reliable and secure connectivity, data transmission, and functionality in the face

of various challenges and disruptions, such as network congestion, hardware failures,

cyber attacks, or power outages.

It also refers to the ability of IoT systems to resist perturbances, recover from

emergencies, and continue functioning in the face of disruptions. There are several

scientific efforts to make IoT systems resilient, and AWS IoT Core features data

redundancy and specific features for data resiliency, such as device shadow and

AWS IoT Device Advisor. However, AWS IoT Core resources are region-specific and

not replicated across regions unless specifically done so. Resilience is increasingly
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important as IoT becomes a critical part of the global internet [8] [9].

3 Machine Learning

3.1 Definition of Machine Learning

Machine learning is a branch of AI and computer science that focuses on the use

of data and algorithms to imitate the way that humans learn, gradually improving its

accuracy [10]. It allows software applications to become more accurate at predicting

outcomes without being explicitly programmed to do so.

It holds significance as it provides enterprises with insights into customer behav-

ior trends and operational patterns, facilitating the creation of innovative products.

Prominent companies like Facebook, Google, and Uber have embraced ML as a fun-

damental aspect of their operations, establishing it as a crucial factor for gaining a

competitive edge [11].

3.2 Types of Machine Learning

ML algorithms can be broadly classified into three types:

• Supervised Learning.

• Unsupervised Learning.

• Reinforcement Learning.

Figure 2.2 represents a diagram that illustrates the different ML algorithm, along

with the categories.
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Figure 2.2: Machine learning Types and Algorithms.

3.2.1 Supervised Learning

Supervised learning is a category within ML that relies on external guidance for

the machine to learn [12]. In supervised learning, models are trained using labeled

datasets [10]. Following training and processing, the model is evaluated by providing

it with sample test data to determine if it accurately predicts the desired output.

The objective of supervised learning is to establish a mapping between input

data and output data. It mirrors the concept of a student learning under the super-
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vision of a teacher. An example of supervised learning is spam filtering.

Supervised learning can be further categorized into two types of problems:

• Classification.

• Regression.

3.2.2 Unsupervised Learning

Unsupervised learning is an algorithmic approach in ML that examines and clus-

ters datasets lacking pre-existing labels to uncover patterns and insights [10].

Unlike supervised learning, unsupervised learning does not rely on a training

dataset to guide the models. Instead, the models autonomously discover concealed

patterns and group the data based on similarities and dissimilarities [13].

Unsupervised learning is employed to unveil the underlying structure of datasets

and finds applications across diverse domains, aiding in data feature summarizing

and explanation.

Additionally, it serves as a means of testing AI and is capable of performing more

intricate processing tasks compared to supervised learning systems [10].

Hence further, it can be classified into two types:

• Clustering.

• Association.

Examples of some Unsupervised learning algorithms are K-means Clustering,

Apriori Algorithm, Eclat, etc.

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

20



3.2.3 Reinforcement Learning

Reinforcement Learning is a form of ML that allows an agent to learn within an

interactive environment through trial and error, utilizing feedback obtained from its

own actions and experiences [14].

This approach revolves around rewarding desired behaviors and penalizing un-

desired ones.

The primary focus of reinforcement learning is determining how intelligent agents

should take actions in an environment to maximize cumulative rewards [15].

Reinforcement learning algorithms acquire knowledge from outcomes and make

decisions about the subsequent actions to be taken. It has demonstrated successful

applications in various domains, such as robot control, elevator scheduling, telecom-

munications, backgammon, checkers, and Go.

Reinforcement learning serves as a valuable technique for automated systems

seeking to identify the optimal behavior or path in specific situations. Q-Learning

algorithm is used in reinforcement learning.

Figure 2.32, realized by Thomas Malone, represent the way on what Machine

Learning models can perform.

3.3 Machine Learning Models

3.3.1 Decision Trees

The decision tree is a supervised learning algorithm primarily employed for solv-

ing classification problems, although it can also tackle regression problems. It ac-

commodates both categorical and continuous variables [12].

The decision tree presents a tree-like structure comprising nodes and branches
2See: https://bit.ly/3gvRho2
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Figure 2.3: Source: Thomas Malone | MIT Sloan.

to represent decisions and their possible consequences (Figure 2.4). It initiates

with a root node and further branches out to leaf nodes. Internal nodes represent

dataset features, branches denote decision rules, and leaf nodes signify the problem’s

outcomes [16].

Decision tree algorithms find practical application in various real-world scenar-

ios. For instance, they are utilized in distinguishing between cancerous and non-

cancerous cells and providing car purchase recommendations to customers.

Figure 2.4: Decision Tree
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3.3.2 Random Forests

Random forest is a supervised learning algorithm employed in ML for both classi-

fication and regression tasks. It operates as an ensemble learning technique, leverag-

ing multiple classifiers to generate predictions and enhance the model’s performance

[12].

This approach encompasses numerous decision trees that operate on subsets of

the provided dataset, amalgamating their outcomes to improve predictive accuracy.

It is recommended to have a random forest consisting of 64 to 128 trees, as a higher

number of trees typically leads to increased algorithmic precision.

In other words, The fundamental concept behind random forest is the wisdom

of crowds. A large number of relatively uncorrelated models (trees) operating as a

committee will outperform any of the individual constituent models. It forest uses

bagging and feature randomness when building each tree to ensure that the trees

are uncorrelated [17].

When classifying a new dataset or object, each tree produces a classification

result, and the algorithm predicts the final output based on majority voting.

Random forest demonstrates efficient processing capabilities, making it suitable

for handling missing and inaccurate data. Additionally, it offers a swift execution

speed.

3.3.3 Naive Bayes

The Naive Bayes classifier is a supervised learning algorithm utilized for making

predictions by considering the probability of an object. It derives its name from

Bayes theorem, as it follows the assumption that variables are independent of each

other, hence "naïve." [12]

Naive Bayes classifiers assume that the value of a particular feature is indepen-

dent of the value of any other feature, given the class variable.

Despite their naive design and oversimplified assumptions, Naive Bayes classifiers
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have worked well in many complex real-world situations [18].

Bayes theorem, on which this algorithm is based, deals with conditional prob-

ability. It calculates the likelihood of event A occurring given that event B has

already taken place. The equation for Bayes theorem is expressed in Equation (2.1).

P (A|B) =
P (B|A) · P (A)

P (B)
(2.1)

Naïve Bayes classifier is one of the best classifiers that provide a good result for

a given problem. It is easy to build a naïve bayesian model, and well suited for the

huge amount of dataset. It is mostly used for text classification.

3.3.4 K-Nearest Neighbors

The K-Nearest Neighbour (KNN) algorithm is a supervised learning technique

applicable to both classification and regression problems. It operates by establishing

the similarities between a new data point and existing data points. Utilizing these

similarities, the algorithm categorizes the new data point into the most similar

class. It is also referred to as a "lazy learner" algorithm because it retains all

available datasets and classifies each new instance with the assistance of its K-

nearest neighbors.

To assign the new instance to the most similar class, KNN calculates the dis-

tance between data points using a distance function. Common distance functions

include Euclidean, Minkowski, Manhattan, or Hamming distance, chosen based on

the specific requirements of the problem [12].
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4 Deep Learning

4.1 Definition of Deep Learning

DL, a subset of ML, employs ANN comprising multiple layers to extract high-

level features from raw input data. It mimics the human learning process and is

considered a form of AI.

The algorithms used in DL are organized hierarchically, with each layer growing

in terms of complexity. They find application in various tasks, including supervised

and unsupervised learning, such as speech recognition, image classification, and

natural language processing. Deep learning plays a crucial role in data science, which

encompasses statistics and predictive modeling, offering significant advantages to

data scientists responsible for gathering, analyzing, and interpreting large volumes

of data.

4.2 Deep Learning Models

Several DL algorithms are widely used, including Multilayer Perceptrons (MLPs),

CNNs, Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Ra-

dial Function Networks, and Self-Organizing Maps.

MLPs are considered the fundamental and oldest deep learning algorithm. CNNs

are particularly effective for image and video recognition tasks, while RNNs and

LSTMs are commonly employed for natural language processing and speech recogni-

tion. Radial Function Networks and Self-Organizing Maps are utilized for clustering

and classification purposes.

As mentioned before, DL algorithms are designed to run dynamically through

multiple layers of NN, with pre-training specifically tailored to the given task.

A few of the cited models are about to be presented down below:
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4.2.1 CNNs

A Convolutional Neural Network (CNN) is a widely utilized neural network ar-

chitecture in the realm of AI’s Computer Vision field [19]. Popular type of neural

network architecture used in the field of Computer Vision within Artificial Intelli-

gence. Computer vision enables computers to interpret and understand visual data,

such as images. In the realm of Machine Learning, Artificial Neural Networks exhibit

strong performance. They are employed in various datasets encompassing images,

audio, and text. Different types of Neural Networks serve different purposes. For in-

stance, Recurrent Neural Networks, particularly Long Short-Term Memory (LSTM)

networks, are suitable for predicting word sequences, while Convolutional Neural

Networks are commonly used for image classification. A typical Neural Network

consists of three types of layers:

• Input Layers: This initial layer receives the input data for the model. The

number of neurons in this layer is equivalent to the total number of features

in the data (e.g., the number of pixels in an image).

• Hidden Layers: The input from the Input layer is transmitted to the hid-

den layer(s). The number of hidden layers can vary depending on the model

and the size of the data. Each hidden layer may contain a different number

of neurons, typically exceeding the number of features. The output of each

layer is computed by performing matrix multiplication between the output

of the previous layer, which has learnable weights, and subsequently adding

learnable biases. This is followed by an activation function, which introduces

nonlinearity to the network.

• Output Layer: The output from the hidden layer is fed into a logistic function,

such as sigmoid or softmax, which converts the output of each class into a prob-

ability score for that class. The data is fed into the model, and the output from

each layer is obtained through a process called feedforward. Subsequently, the
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error is calculated using an error function, such as cross-entropy or square loss

error. The error function measures the performance of the network. The next

step involves backpropagation, where derivatives are calculated to minimize

the loss. Backpropagation is essential for adjusting the model’s parameters

and improving its performance.

Convolutional Neural Network consists of multiple layers like the input layer,

Convolutional layer, Pooling layer, and fully connected layers. The Convolutional

layer applies filters to the input image to extract features, the Pooling layer down-

samples the image to reduce computation, and the fully connected layer makes the

final prediction. The network learns the optimal filters through backpropagation

and gradient descent.

4.2.2 Multilayer Perceptrons

MLP serves as an extension of the feed-forward neural network. It encompasses

three distinct layers as depicted in

the input layer, the output layer, and hidden layers, as depicted in Figure 2.5:

1. Input Layer.

2. Output Layer.

3. Hidden Layers.

The input layer receives the input signal for processing, while the output layer

is responsible for performing tasks such as prediction and classification.

The true computational engine of the MLP resides within an arbitrary number

of hidden layers positioned between the input and output layers. Similar to a feed-

forward network, the data flows in a forward direction from the input layer to the

output layer [20].
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Figure 2.5: MLP with a Single Hidden Layer

In an MLP, the neurons are trained using the backpropagation learning algo-

rithm. MLPs are specifically designed to approximate any continuous function and

can effectively address problems that are not linearly separable. Prominent use cases

of MLPs include pattern classification, recognition, prediction, and approximation.

4.2.3 Reccurent Neural Networks

An ANN known as a RNN is specifically designed for handling sequential or

time-series data.

Unlike CNN, RNNs incorporate hidden states and allow the utilization of pre-

vious outputs as inputs. This enables RNNs to effectively process sequential data

by utilizing the output from one time step as the input for the next step. RNNs

find extensive applications in various fields such as natural language processing and

speech recognition. Nonetheless, RNNs do have certain drawbacks, including chal-

lenges with training due to issues like the vanishing and exploding gradients [21].

Another constraint of traditional RNNs is the lack the ability to incorporate fu-

ture inputs into the current state. Furthermore, RNNs encounter difficulties when

dealing with long-term dependencies, which can result in problems such as gradient

vanishing and exploding.

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

28



However, a solution to these limitations emerged in the form of Long Short-Term

Memory Networks (LSTMs). LSTMs were introduced to address these shortcom-

ings by enabling the learning of long-term dependencies through the retention of

information over extended periods [22].

1. Long Short Term Memory (LSTM):

LSTM is a specific type of ANN that finds application in DL and ML tasks.

It serves as a variation of RNNs and exhibits the capability to effectively

handle lengthy time-series data, enabling the learning of order dependencies

in sequence prediction tasks.

In contrast to conventional feedforward neural networks, LSTM incorporates

feedback connections and possesses the ability to process not only individual

data points but also complete data sequences.

One of the primary objectives of LSTM is to address the challenge of long-

term dependencies encountered by RNNs. While RNNs struggle to predict

information stored in long-term memory, LSTM provides more accurate pre-

dictions by leveraging recent information. The structure of LSTM consists of a

chain comprising four neural networks and incorporates memory blocks known

as cells. These cells retain information, and the manipulation of memory is

facilitated by specialized components called gates [23].

Each recurrent neural network consists of a series of repeating neural network

modules, forming a chain. These networks incorporate loops, allowing informa-

tion to be retained within the network. Figure 1 illustrates a simple recurrent

neural network with loops. In this figure, the neural network denoted as Fig-

ure 1, A takes the input xt and generates the output ht. The presence of a

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

29



loop facilitates the transfer of data from one phase of the network to the next.

LSTM is explicitly designed to tackle the problem of long-term dependencies.

Each recurrent neural network is composed of a sequence of repeating neural

network modules. To aid in comprehension of the subsequent sections, Table

2 presents a list of symbols that are utilized to explain the various concepts

[23] [24].

Figure 2.6 illustrates a simple recurrent neural network with loops. LSTM

takes the input xt and generates the output ht. The presence of a loop facili-

tates the transfer of data from one phase of the network to the next. LSTM is

explicitly designed to tackle the problem of long-term dependencies. Each re-

current neural network is composed of a sequence of repeating neural network

modules [24].

Figure 2.6: Simple Recurrent Neural Network

5 Machine Learning VS Deep Learning

Taking into account Figure 2.7:

• The functioning of ML models can be illustrated through the example of

image recognition for distinguishing between cats and other animals.
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In this scenario, the ML model takes images of cats as input. It then

extracts distinct features from these images, such as shape, height, nose,

eyes, and other relevant characteristics. By employing a classification

algorithm, the model analyzes these features and generates a prediction

as output.

• The functioning of DL can be comprehended using the same example of

distinguishing mentioned previously.

In DL models, the images serve as input and are directly fed into the al-

gorithms, eliminating the need for manual feature extraction. The images

traverse through various layers of an artificial neural network, allowing

the model to predict the final output.

Figure 2.7: Machine Learning VS Deep Learning

Table 2.1 taken from [25] shows the Key comparisons between ML and DL.
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Parameter ML DL
Data Depen-
dency

Although ML depends on the
huge amount of data, it can
work with a smaller amount
of data.

DL algorithms highly depend
on a large amount of data,
so we need to feed a large
amount of data for good per-
formance.

Execution
Time

ML algorithm takes less
time to train the model than
DL,However, testing the
model can be time-consuming
and requires a significant
duration.

DL takes a long execution
time to train the model, but
less time to test the model.

Hardware De-
pendencies

Since ML models do not need
much amount of data, so they
can work on low-end ma-
chines.

The DL model needs a huge
amount of data to work effi-
ciently, so they need GPU’s
and hence the high-end ma-
chine.

Feature Engi-
neering

ML models need a step of
the interaction with the ex-
pert performing feature ex-
traction, after which it contin-
ues to progress.

DL is the enhanced version
of ML, so it does not need
to develop the feature ex-
tractor for each problem; the
problem-solving approach fo-
cuses on allowing the model
to learn high-level features di-
rectly from the data.

Problem-
solving ap-
proach

To solve a given problem, the
traditional ML model breaks
the problem in sub-parts, and
after solving each part, pro-
duces the final result.

The problem-solving ap-
proach of a DL model is
unlike tradictional ML mod-
els.

Interpretation
of result

The ease of interpreting the
result for a specific problem
is evident. As when we work
with ML, we can interpret the
result easily, it means why
this result occur, what was
the process.

The interpretation of the re-
sult for a given problem can
get very difficult. We may
get a better result for a given
problem than the ML model,
but we cannot find why this
particular outcome occurred,
and the reasoning.

Type of data ML models mostly require
data in a structured form.

DL models can work with
structured and unstructured
data both as they rely on the
layers of the ANN.

Suitable For ML models are suitable for
solving both simple and mod-
erately complex problems.

DL models are suitable for
solving complex problems.

Table 2.1: Key Differences Between Machine Learning and Deep Learning.
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6 Digital Twins

6.1 Digital Twins History

The article [26] recorded in 2019 that over 850 academic papers on the topic

of Digital Twins have been published since 2016.

The concept of a "twin" has its roots in the National Aeronautics and Space

Administration (NASA) Apollo program of the 1970s. During this time, NASA

built a replica of space vehicles on Earth that mimicked the equipment’s con-

dition during the mission. This was done to ensure that NASA could test and

prepare for every possible scenario that might occur during the mission. This

was the first application of the "twin" concept [27].

In 2003, Michael Grieves, a professor of engineering at the University of Michi-

gan, proposed the idea of a DT in his Product Life-cycle Management (PLM)

course. DT is a virtual digital representation of physical products that can be

used to simulate and analyze real-world scenarios in a virtual environment. DT

technology enables manufacturers to create a digital copy of a physical prod-

uct, which can then be used to monitor and predict its performance, optimize

its design, and reduce the time and cost of maintenance and repairs.

In 2012, NASA applied DT to integrate high-fidelity simulation with a vehicle’s

on-board health management system, maintenance history, and fleet data to

mirror the life of its flying twin. This allowed NASA to monitor the health

and performance of their equipment in real-time, identify potential problems

before they occurred, and increase safety and reliability.

The development of the IoT has boosted the manufacturing industry’s adop-

tion of DT technology. With the IoT, manufacturers can connect their physical
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products to the internet and collect data on their performance in real-time.

This data can then be used to create a DT of the product, which can be used

to monitor and optimize its performance, predict maintenance needs, and im-

prove its design.

Enterprises like Siemens and General Electric (GE) 3, have developed DT plat-

forms for real-time monitoring, inspection, and maintenance. These platforms

enable manufacturers to monitor their products in real-time, identify potential

problems before they occur, and reduce the time and cost of maintenance and

repairs.

In 2017, Tao and Zhang proposed a five-dimensional DT framework to guide

the digitalization and intellectualization of the manufacturing industry. The

framework provides theoretical guidance for the digitalization and intellectual-

ization of the manufacturing industry and includes five dimensions: physical,

cyber, human, virtual, and knowledge.

From 2017 to 2019, Gartner continuously ranked DT among the top 10 tech-

nological trends with strategic values. DT is becoming increasingly important

in the manufacturing industry, as it enables manufacturers to monitor and

optimize their products in real-time, predict maintenance needs, reduce the

time and cost of maintenance and repairs, and improve their designs.

Figure 2.8 provides a brief History summary of the DT.

Similar to what was previously stated, since their inception, DT have rapidly

evolved and become increasingly popular in various industries such as man-

ufacturing, healthcare, and urban planning, among others, thanks to their
3GE is a multinational conglomerate that operates in various industries including aviation,

healthcare, renewable energy, and power generation. It was founded in 1892 and is based in
Boston.
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Figure 2.8: Brief History of Digital Twins.

ability to replicate real-world objects, processes, or systems with a high level

of accuracy, simulate and test different scenarios, monitor their performance

in real-time, and optimize their design and operation, thereby enabling or-

ganizations to make more informed decisions, improve their efficiency, reduce

costs, and enhance their customer experience, and as technology advances and

more data is collected, analyzed, and shared, it is likely that digital twins

will continue to play a vital role in shaping the future of many sectors and

transforming the way we live, work, and interact with the world around us.

Figure 2.9, taken from the article [26], shows advancement, evolution and

development of DT over time.

This new technology is going to be discussed further more in Chapter 3.
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Figure 2.9: Development and spread of Digital Twins over time.
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1 Digital Twins Concepts

1.1 Introduction

In recent years, the significance of digital twins has grown substantially within

the IoT field. Essentially, a digital twin refers to a virtual representation of a

physical object or system that is constructed using data obtained from sensors

and other relevant sources.

Within the realm of IoT, digital twins find utility in real-time monitoring and

management of physical assets and systems like buildings, vehicles, and manu-

facturing equipment. By simulating the behavior of the corresponding physical

object or system, digital twins contribute to the identification of potential is-

sues and the optimization of performance.

This chapter delves into a comprehensive exploration of the digital twin con-

cept, providing a more detailed overview in the form of a state-of-the-art anal-

ysis. It covers the general definition of digital twins, their inherent character-

istics, and their architectural aspects.

1.2 Definition of Digital Twins

DT faces challenges due to the lack of a universally accepted definition and es-

tablished implementation standards. This lack of consensus makes it challeng-

ing to design, implement, and widely adopt this technology [28]. Furthermore,

since DT is applied in various domains and relies on evolving technologies, it

requires customization for each specific domain and is influenced by the cur-

rent state of these technologies.

Table 3.1 displays a range of DT definitions along with their corresponding
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reference and applied fields.

Numerous articles have focused on the absence of a fixed and pre-established

concept for DTs. This gap has been addressed in several articles, which have

proposed the following definitions:

• Grieves and Vickers define the DT as a connection of virtual and digital

representations that comprehensively depict and describes the existing

physical asset, encompassing its molecular composition and overall ge-

ometry. When functioning optimally, a Digital Twin provides all the

information that would typically be gleaned from examining the phys-

ical counterpart. There are two types of Digital Twins: Digital Twin

Prototype (DTP) and Digital Twin Instance (DTI) [28].

• "Various terms have been given in multiple literature works, such as-

’ultra-high fidelity’, ’cradle-to-grave’, ’integrated’ model , Integral Dig-

ital Mock-Up (IDMU). These terms are important and relevant to the

DT concept, however, having multiple definitions and terms has delayed

reaching a consensus on a single representative, unifying definition. In the

simplest words, a digital twin is a ’digital’ ’twin’ of an existing physical

entity" [28].

• "A DT is the virtual digital representation equivalent to physical prod-

ucts" [36].

1.2.1 Deducing a General Definition of Digital Twins

In the course of exploring the literature on DT, it becomes apparent that many

articles have examined the concept of DT within a particular domain, such

as manufacturing or healthcare, as a result, a comprehensive and universally

applicable definition of DT has been elusive.
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Domain Definition
Aerospace - A DT is an integrated multiphysics, multiscale, probabilis-

tic simulation of an as-built vehicle or a system that uses
the state-of-the-art physical models and other relevant in-
formation to accurately replicate the life and behavior of its
corresponding flying counterpart. The DT is ultra-realistic
and may consider one or more important and interdepen-
dent vehicle systems.
- DT is a life management and certification paradigm
whereby models and simulations consist of as-built vehi-
cle state, along with recorded loads, environmental condi-
tions, and specific historical data related to the vehicle, in
order to facilitate detailed and precise modeling of individ-
ual aerospace vehicles throughout their operational lifespan.

[29]
[30]

Industry DT is an evolving digital profile of the historical and current
behavior of a physical object or process that helps optimize
business performance. It is based on massive, cumulative,
real-time, real-world data measurements across an array of
dimensions.

[31]

Engineering A DT is a digital replica of physical assets, processes, and
systems that can be used for various purposes, such as sim-
ulation, optimization, and monitoring.

[32]

Healthcare A DT is a personalized, dynamic, and data-driven compu-
tational model that can be used to simulate an individual’s
physiology and health status, and to predict their response
to treatment or changes in lifestyle.

[33]

Agriculture DT is a dynamic approximation of an entity in virtual space,
continuously updated through the collection of data, mod-
els, and what-if simulation. In the majority of applications
found in current research, agricultural DT form a simplified
or functionally reduced view of the observed entity or sys-
tem, as cost, complexity, and goals are balanced with func-
tionality and replication correctness requirements, as guided
by the functional requirements of the intended application.

[34]

Manufacturing DT are software models that represent the attributes and
operating behavior of physical assets and processes. They
support better decision making by simulating how assets
behave given certain inputs.

[35]

Table 3.1: Diverse Definitions of Digital Twins in Literature
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However, by synthesizing the information collected from these various sources,

we can arrive at a global definition of DT that encompasses the most salient

features and characteristics of the concept:

DT refer to a combination of virtual machines and computer-based models

that enable the simulation, emulation, or mirroring of the behavior and char-

acteristics of a physical entity, such as an object, a process, a human, or

a human-related feature. The relationship between a DT and its PT is es-

tablished through a bijective connection that enables continuous interaction,

communication, and synchronization between the two.

Unlike static models or simulations, DT are living, intelligent, and evolving

models that follow the life-cycle of their PT to monitor, control, and optimize

their processes and functions. DT can predict future statuses, such as defects,

damages, or failures, and simulate and test novel configurations to proactively

apply maintenance operations.

The twinning process is facilitated by a closed-loop optimization approach that

considers the DT, its PT, and the external surrounding environment. This ap-

proach ensures that DT are more than just simple models or simulations. They

are a dynamic and responsive tool that allows designers, engineers, and op-

erators to enhance the efficiency, safety, and performance of physical systems

across various industries.

To aid in visualization,Figure 3.1 is provided.

1.3 Components of a Digital Twin

The concept of digital twins was initially introduced by Grieves [37], who

defined it as comprising three key components: the digital or virtual part, the
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Figure 3.1: Digital Twin’s Example Representation

physical product or asset, and the connection between them.

• On the virtual side, there has been significant improvement in the amount

of available information. Additional behavioral characteristics have been

incorporated, enabling not only visualization of the product but also the

ability to test its performance capabilities.

• On the physical side, there is a greater capacity to gather information

about the characteristics of the physical product. This includes collecting

various physical measurements from automated quality control stations

like Coordinate Measuring Machines (CMMs).

As the concept evolved, other authors, such as Tao et al., expanded the defini-

tion of a DT to include additional components like data and service. Tao et al.

also recognized Verification, Validation and Accreditation (VVA) as essential

elements of a digital twin. Miller et al., with the introduction of data models,

further broadened the definition by incorporating the integration of multiple

models [28].

Despite these efforts to refine the definition of a digital twin, achieving a

consensus on its fundamental requirements remains challenging. This is due

to variations in the necessary components and properties of digital twins across

different works. Moreover, the domain-dependence of digital twins necessitates
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defining components that can be universally applied across domains.

To tackle this challenge, researchers have compiled and integrated the essential

components and properties from previous works to provide a comprehensive

definition of a digital twin. These properties and components are considered

necessary for the effective implementation and understanding of digital twins.

By integrating the contributions of previous works, which have only been con-

cerned with some components of DT, researchers aim to provide a more holistic

definition of a DT.

Based on this analysis and understanding, researchers have defined the ele-

mentary and imperative components of a DT. These components provide a

comprehensive definition of a DT that can be used across domains. By refining

the definition of a DT and its fundamental requirements, researchers aim to

provide a framework that can support the development and implementation

of DT in a range of applications and industries.

The Table 3.2 taken from [28], summarises how each component contributes

uniquely to the functions of DT. Removing any component voids the DT of

the functionality and its uniqueness. The three first rows are required, and

the rest contribute to the uniqueness of the Digital Twin.

Characteristics Definitions
Physical Asset What the digital twin is a twin of.
Digital Asset The Digital Twin
Continuous Bijective Rela-
tion

For real-time synchronisation and twinning.

IoT For data collection and information sharing.
Time Continuous Data For synchronisation and input to ML.
ML For analytics of the asset.
Security To prevent data leaks and information compro-

mises.
Evaluation metrics / Test-
ing

To evaluate the performance of DT.

Table 3.2: The Required and Optional Components of a Digital Twin.
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☞ Note: In this paper, the considered components are: Physical Asset, Digital

Asset, Continuous Bijective Relation, IoT, ML.

1.4 Characteristics and Requirements of a Digital Twin

Although the definition of a digital twin may appear straightforward, it is the

properties of the technology that distinguish it as more than just a mere digital

replica. Some properties are required to create an accurate and authentic

digital twin, while others are dynamic and can evolve over time. This section

will explore both types of characteristics in detail.

1.4.1 Essential Characteristics (Requirements)

The Necessary properties and features mentioned in the Article [28] are:

• Real-time connection with the physical entity by making a bi-univocal

relation between DT and the physical asset which means that the PT is

uniquely paired with its DT.

• Self-evolution is a characteristic that has not been explored much. Seld-

evolution means that a DT can learn and adapt in real-time, by providing

feedback to both physical asset and DT. This can be easily harnessed now

due to the up rise of machine learning tools: to remodel and redesign itself

(such as reinforcement learning). The frequency of this synchronisation

depends on the update scenarios, such as event-based (supply chain),

periodic intervals (aircraft), condition based (logistics), etc.

• Continuous ML analysis (dependent on the frequency of the synchroni-

sation), not just one-time output forecasting.

• Availability of time-series (or time continuous) data for monitoring, and

as input to ML system.
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• Domain dependence (or Domain specific services): According to the do-

main, a DT may provide or prioritise services specific to the industry.

These are the same ’domain specific’ services which exist in the physical

asset (for example the optimisation problem).

• Knowledge Database: it provides the Digital Twin with the Knowledge

base required to provide Services. In Order to filter out the specific

Knowledge from the huge amounts of Data collected on the Internet –

that is to say Big Data (BD) – these Amounts of Data must be analyzed

accordingly [38].

Table 3.3 shows the characteristics presented in [39].

1.4.2 Dynamic Characteristics

By leveraging these dynamic properties [28], it is possible to establish a hier-

archy of digital twins.

• Autonomy: A digital twin can exhibit different degrees of autonomy.

It can either autonomously make changes to the corresponding physical

asset or allow a human operator to make modifications to the digital

twin. This classification extends to various components within the twin,

such as certain parts of the machine learning system or the decision-

making system. Consequently, the property of autonomy can be classified

as fully autonomous, non-autonomous, or partially autonomous. This

classification also encompasses the self-evolution mechanism of the digital

twin, specifying which changes can be made autonomously and which

require human approval.

• Synchronisation: SThe synchronization of data in a digital twin can

occur continuously or at specific time intervals. This aspect depends

on factors like technology, available resources, data requirements, and
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Characteristics Definitions
Physical Entity/
Physical Twin

The physical entity/twin exists in the external real environ-
ment.

Virtual Entity/
Virtual Twin

The virtual entity/twin that exists in the virtual environment.

Physical Envi-
ronment

The environment within which the PT exists.

Virtual Environ-
ment

The environment within which the virtual entity/twin exists.

State The measured values for all parameters corresponding to the
PT, DT and its environment.

Metrology The act of measuring the state of the physical/virtual en-
tity/twin.

Realisation The act of changing the state of the physical/virtual en-
tity/twin.

Twinning The act of synchronising the states of the physical and virtual
entity/twin.

Twinning Rate The rate at which twinning occurs.
Physical-to-
Virtual Connec-
tion/ Twinning

The data connections/process of measuring the state of the
physical entity/twin/environment and realising that state in
the virtual entity/twin/environment.

Virtual-to-
Physical Con-
nection/ Twin-
ning

The data connections/process of measuring the state of the
virtual entity/twin/environment and realising that state in the
physical entity/twin/environment.

Physical Pro-
cesses

The processes within which the physical entity/twin is en-
gaged, and/or the processes acting with or upon the physical
entity/twin.

Virtual Pro-
cesses

The processes within which the virtual entity/twin is engaged,
and/or the processes acting with or upon the virtual en-
tity/twin.

Table 3.3: The characteristics of the Digital Twin and their descriptions.
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the type of machine learning algorithm employed. A digital twin may

consist of sub-components that undergo continuous synchronization for

some aspects and event-based synchronization for others. The specific

synchronization approach employed can result in different hierarchical

structures. This synchronisation can result in different hierarchies based

on the following:

(a) How often the data is collected?

(b) How often the data is stored?

(c) How often the DT is updated?

1.4.3 Key Characteristics Highlighted in this Paper

In this paper, the characteristics taken into consideration are the following:

• Real-time connection with the physical entity.

• ML analysis.

• Domain dependence.

• Knowledge database

• Availability of time-series data.

• Synchronisation.

1.5 An Overview on the Predecessors of Digital Twins

and Their Key Differences

The process of generating virtual representations of physical objects, facilities,

or processes results in the creation of virtual models that belong to a virtual

space. These models are essentially computer-generated replicas of their real-

world counterparts and exist within a digital environment. In this subsection,

a distinction is made between the several types of Digital Models.
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These Models differ primarily in how Data Flows between an original in Phys-

ical Space and its Model in Virtual Space. As can be seen in Figure 3.2,

the Organization of the Data Flow in these Models is either manual and/or

automatic. These three Types of Digital Models are presented below.

1.5.1 Digital Model / Digital Simulation Model

In [28], the author talked about the flow of data of a DT by mentioning that it

has only manual exchange of data and that it does not showcase the real-time

state of the model.

Similarly, the author of [38] defines the purpose of a Digital Simulation Model:

it is to replicate a system with its dynamic internal Processes in order to obtain

Knowledge that can be transferred to the original Physical System.

The Simulation is mainly realized with the Support of Computers using an

experimental Digital Model. This is typically carried out spontaneously and

only at certain Times. In doing so, often only those Features of the original

System are modeled that are of Importance for specific Problems to be solved.

As already mentioned above, the special Feature of the Use of Digital Simu-

lation Models is that the Data between the Physical Original System and the

Simulation Model is not transferred directly (automatically) in both directions

– but indirectly – and often manually.

1.5.2 Digital Shadow

Digital Shadow is a saved data copy of the physical state [28], it sums all the

data that is left behind every time a digital service is used, such as the Internet

or a mobile phone. It is a collection of data traces put together for a specific

purpose and can include measured parameters as well as historical data [40].
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It has a one way data flow from physical object to the digital object [28].

In the industrial sector, digital shadows represent virtual copies that are cre-

ated to interact with other people and environments. It is possible to make

digital shadows of digital twins because they can capture and simplify the

multitude of information that they generate.

1.5.3 Digital Twin

The digital twin on the other hand, has fully integrated data flow where the

digital twin properly reflects the actual state of the physical object.

Figure 3.2: Digital Simulation VS Digital Shadow VS Digital Twin
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1.5.4 Digital Model VS Digital Shadow VS Digital Twin

After defining each concept individually, a comparative analysis can be made.

Digital model, digital shadow, and digital twin are related concepts but have

distinct differences.

A digital model is a computerized, data model of a building, product, or some

other object that describes the form of an existing or proposed object.

A digital shadow represents virtual copies that we create to interact with other

people and environments. In the industrial sector, it is used to monitor and

optimize the performance of physical assets.

A digital twin is a virtual replica of a physical asset that is used to simulate,

predict, and optimize the performance of the asset. It emphasizes the bi-

directional approach, where the information flow not only from digital assets

to the physical world but also loops back from the physical world to the digital

world [41] [42] [43] [44] [45].

1.6 Different Types of Digital Twins

There are four distinct types of digital twin technology [46] [47], each with

its own characteristics and benefits. These types include component, asset,

system, and process twins. In this subsection, each of these types are going to

be seen in more detail.

To assist with visualization, Figure 3.3 is provided, which showcases an exam-

ple of each type of DT.
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1.6.1 Components Twins

Digital models of individual components or parts, such as motors, sensors,

switches, and valves, are known as component twins. These twins are the

basic unit of a DT and the smallest example of a functioning component.

They offer detailed information regarding a component’s behavior and perfor-

mance in real-time as well as over time. This enables organizations to monitor

the performance and health of these components and make necessary changes

whenever required.

1.6.2 Asset Twins

Digital models of physical assets and when two or more components work

together, such as buildings, machines, and vehicles, are referred to as asset

twins. These twins provide real-time information about the operational sta-

tus, performance data and environmental conditions of an asset. As a result,

organizations can minimize downtime and enhance the efficiency of their op-

erations.

1.6.3 System Twins/Unit Twins

The next level of magnification involves system or unit twins, which enables

to detect different assets connected to form a whole functioning system.

These twins facilitate the monitoring and analysis of a system’s performance,

helping organizations to pinpoint areas that require improvement. System

twins enable organizations to optimize their processes and enhance their op-

erational efficiency. They provide visibility regarding the interaction of assets,

and may suggest performance enhancements.
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1.6.4 Process Twins

Digital models of entire business processes or customer journeys are referred to

as process twins. It is the macro level of magnification. They furnish compre-

hensive information on how customers interact with an organization’s products

and services in real-time, assisting organizations in identifying areas where cus-

tomer experience can be enhanced. They reveal how systems work together

to create an entire production facility. Process twins can help determine the

perfect timing schemes that ultimately influence overall effectiveness.

In [26], two different types of a DT have been given:

(a) A Dynamic DT fed by live data flows from a physical asset, for ex-

ample a building, or one of its components, like a lift motor. Insights

and programmed instructions from the digital twin can then impact the

physical twin using real-time control mechanisms, for example shutting

down a faulty lift or adjusting the temperature of a room.

(b) A Static DT that changes periodically as long-term data about a phys-

ical asset are added in. This type of digital twin is used for strategic

planning, and feedback into the physical twin is achieved through the

capital investment process.
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Figure 3.3: Digital Twin’s types Example Robot Poppy Ergo Jr
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2 Digital Twins with ML and DL

2.1 Introduction

ML and DL are an important aspect of DT technology, as they can be used

to predict and analyze data in order to improve decision-making and optimize

performance. There are several studies that explore the integration of ML and

DL in DT technology, including the use of DL for decision support [48].

It is used in DT as well to create smart machines and plants whereby the

inputs from sensors are analyzed in real-time.DT integrate IoT, AI and ML

with software analytics to create digital living. The purpose of integrating DL

and DT is to improve the accuracy of the DT model and to reduce the time and

cost of the modeling process. ML provides important real-time insights that

enhance situational awareness and enable fast, effective responses. It often

can predict the future behavior of the system and provide recommendations

for optimizing the system’s performance [49] [50] [51].

2.2 ML Appliance in Digital Twins

As it is mentioned in [51], there are two widely used Data Science (specif-

ically ML) areas used in DT that are explained down bellow and has been

summarized in Table 3.4.

2.2.1 Diagnostic and Predictive Analytics:

The field of IoT has brought about significant advancements in the realm of

smart machines and plants. With the ability to connect a vast network of

devices, IoT enables the seamless exchange of data and information between

interconnected devices, systems, and humans.
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As stated in [51], by integrating ML algorithms with IoT, intelligent systems

that analyze and understand vast amounts of data in real-time can be created.

These systems can then use this data to diagnose potential problems and

predict future behaviors of the system.

The Twin is one such intelligent system that uses IoT and ML algorithms to

analyze and understand inputs from various sensors in real-time. The Twin is

essentially a virtual replica of the physical system, and it continually updates

itself based on the data received from the sensors.

Using advanced ML algorithms, the Twin can learn from historical data and

use this information to make predictions about the future behavior of the

system. This ability to predict future behaviors can help prevent failures and

other problems before they occur, saving time, money, and potentially even

lives.

The Twin can also diagnose the causes of problems by analyzing sensor data

in real-time. By identifying patterns and anomalies in the data, the Twin can

quickly determine the root cause of the issue and suggest potential solutions.

In summary, IoT-based ML models, such as the Twin, are revolutionizing the

way a complex system is designed and maintained.

By enabling real-time analysis and understanding of sensor data, these models

can help prevent problems before they occur, improving efficiency and reducing

downtime.

2.2.2 Prescriptive Analytics:

Prescriptive Analytics is a field of data science that involves using advanced

mathematical and computational techniques to identify optimal or feasible

solutions to complex problems. Specifically, prescriptive analytics involves

simulating an entire network of interconnected systems to identify the best
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possible solution from a very large set of candidate solutions, given a set of

variables and constraints that must be adhered to.

The primary objective of prescriptive analytics is to maximize stated business

goals, such as throughput, utilization, output, and other key performance

indicators. This can involve creating schedules for resources such as vehicles,

personnel, and machines, to ensure maximum efficiency and productivity.

In practice, prescriptive analytics is widely used in supply chain planning and

scheduling. For example, a logistics provider might use prescriptive analytics

to create a schedule for its resources to ensure on-time delivery, while a man-

ufacturer might use the technique to optimize the utilization of machines and

operators to achieve maximum on-time, in-full deliveries.

To solve these complex decision-driven problems, prescriptive analytics relies

on a technique called Constrained Mathematical Optimization. This involves

formulating mathematical models that take into account all of the variables

and constraints that must be considered in order to arrive at an optimal or

feasible solution.

Powerful solvers are then used to solve these complex mathematical models,

often involving millions of variables and constraints, to arrive at the best pos-

sible solution. This approach is highly effective at solving complex problems

that would be too difficult or time-consuming to solve manually, and can help

organizations make better decisions and achieve their stated business goals

more efficiently.

To summarize, ML models predict likely outcomes for a given set of input fea-

tures based on history, and Optimization models helps you decide that should

a predicted outcome(s) happen.

☞ Note: This study focuses on the first point explained in Section 2.2.1.

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

58



Diagnostic and Predictive Analyt-
ics

Prescriptive Analytics

Given a range of inputs, the Twin
should be able to diagnose the causes or
predict the future behavior of the sys-
tem. IoT based machine learning mod-
els is what is used to create smart ma-
chines and plants whereby the inputs
from sensors are analyzed in real time
to diagnose, predict and thereby pre-
vent future problems and failures before
they occur.

This is where an entire network is sim-
ulated to identify an optimal or feasible
solution from a very large set of candi-
dates, given a set of variables and con-
straints to be adhered to, usually with
the objective of maximizing stated busi-
ness goals.

Table 3.4: Diagnostic and Predictive Analytics VS Prescriptive Analytics

2.3 Selecting an Adapted Model for IoT tabular Data

When selecting an adapted model for IoT tabular data, there are several factors

to take into consideration. A few of those key considerations are mentioned

down below:

• Data Type:

IoT devices generate various different types of data, among them, struc-

tured data, unstructured data, time-series data, etc. The chosen model

should be capable of handling the specific type of data generated by the

IoT devices so that it can give a good result.

• Complexity:

IoT data can be complex and difficult to analyze so the selected model

should be able to handle the complexity of the data and provide accurate

results.

• Scale:

IoT devices generate a large volume of data, often in real-time. The model

that would be chosen should be capable of processing large amounts of

data quickly and efficiently.
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• Security:

IoT data can be sensitive and confidential. The model must have robust

security features to protect the data from unauthorized access.

• Integration:

The model must be compatible with the existing technology stack and

able to integrate with other systems and applications in the targeted

organization.

• Deployment:

The deployment options for the model should be taking into considera-

tion, including cloud-based, on-premises, or hybrid solutions, depending

on the organization’s needs.

Some popular models for IoT data analysis include ML algorithms, DL Neural

Network (NN) and statistical models. It’s important to evaluate different

models and their capabilities as it has been done in Chapter 1, Section 3.3.

Before selecting the model that suits best the IoT data, few points needs to

be specified especially concerning the data type since it would be the input of

the future model. Down below are the characteristics of the selected use case

that would be presented in the engineering report:

• The datatype is time series data.

• the Machine learning problem is a classification problem.

• The selected model needs to handle scalability and efficiency, since as

mentioned previously, DTs can handle huge data coming from different

data sources and large datasets with high-dimensional features efficiently.

• Real-time prediction.

The models that suits more these descriptions are:
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• Recurrent Neural Networks.

• Decision Trees.

An article that used RNN in presented in the next subsection.

2.3.1 Design and development of RNN anomaly detection model

for IoT networks

2.3.1.1 Description

The contributions of the mentioned paper [24] is to:

• Design of an anomaly detection model for IoT networks using a RNN.

• Design of an anomaly detection model for IoT networks using CNN and

RNN.

• A lightweight anomaly detection model for IoT networks using a RNN.

• Performance improvements of multiclass and binary classification models.

The focus is established on the proposed model. But first, the stages of an

LSTM are viewed in details.

List of symbols:

xt : Input.

ht : New hidden state.

ht−1 : Previous hidden state.

Ct−1 : Previous cell state.

C̃t : Current cell state (Candidate).

Ct : New cell state.

ft : Forgot gate.
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it : Input gate.

(x) : Sigmoid function.

tanh(x) : Tanh function.

Wx : Gate weight.

bx : Gate biases.

(a) Phase 1: The initial stage of the procedure involves the implementation

of the forget gate, where the determination is made regarding the rele-

vance of specific segments within the cell state. In other words, the focus

of this step is on identifying the information that should be disregarded

from the cell state.

This assessment is based on the combination of the preceding hidden state

and the fresh input data. And the mentioned determination is carried

out by a sigmoid layer referred to as the "forget gate layer".

Through the utilization of the sigmoid activation shown in the left side

of Figure 3.4, the network analyzes the values in ht−1 (previous hidden

state) and xt (new input data) to produce a vector where each element

falls within the range of [0, 1] in the cell state Ct−1 A value of 1 indicates

complete retention, while a value of 0 signifies complete discarding [24]

[52].

Figure 3.4: Sigmoid and Tanh Functions
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The operation of the forget gate layer, which is depicted in Figure 3.5, is

captured by Equation (3.1).

ft = σ(Wf · [ht−1, xt] + bf ) (3.1)

it = σ(Wi · [ht−1, xt] + bi) (3.2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3.3)

Ct = ft × Ct−1 + it × C̃t (3.4)

Figure 3.5: LSTM Forget Layer Operation

After generating the output values, they are multiplied element-wise with

the previous cell state. This pointwise multiplication serves to diminish

the impact of the cell state components that are considered irrelevant by

the forget gate network. Those components receive a value close to 0,

resulting in reduced influence on subsequent steps [52].
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In summary, the forget gate determines which aspects of the long-term

memory should be disregarded (given less weight) based on the prior hid-

den state and the latest data point in the sequence.

(b) Phase 2:

In this next step, the memory network and input gate come into play.

The objective of this stage is to identify the pertinent information to be

incorporated into the long-term memory (cell state) of the network, con-

sidering the preceding hidden state (ht−1) and the fresh input data (xt).

The New Memory Network:

it is a tanh activated neural network which has learned how to combine

the previous hidden state and new input data to generate a ‘new memory

update vector’. This vector essentially contains information from the new

input data given the context from the previous hidden state. This vector

tells us how much to update each component of the long-term memory

(cell state) of the network given the new data [52].

The tanh function has been used in this context because its output val-

ues range from -1 to 1, allowing for the inclusion of negative values. The

inclusion of negative values is crucial for the intent of diminishing the

influence of a component in the cell state.

Input Gate:

In the first part mentioned above, which involves generating the new

memory vector, a significant issue arises. It fails to assess whether the

new input data holds any significance worth remembering. This is where

the input gate comes in.
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The input gate operates as a filter, employing a sigmoid-activated network

to identify the components of the "new memory vector" that are worth

retaining. By producing a vector of values ranging from 0 to 1 (due to the

sigmoid activation), the input gate functions as a filter through pointwise

multiplication. Similar to our observations with the forget gate, an out-

put value close to zero indicates that the corresponding element of the

cell state should not be updated.

Output: The outputs from the first and second parts are multiplied

element-wise. This operation ensures that the magnitude of the newly

chosen information determined in the second part is regulated and set to

0 if necessary.

The resulting combined vector is then added to the cell state, effectively

updating the network’s long-term memory [52].

The operation of the Input gate layer, which is depicted in Figure 3.6, is

captured by Equation (3.2) and Equation (3.3).

(c) Phase 3:

In LSTM networks, the cell state refers to the memory component that

carries information throughout the sequence. It serves as a form of long-

term memory that allows the network to retain information over longer

periods, mitigating the vanishing gradient problem.

The cell state acts as an information highway, enabling the LSTM to pre-

serve relevant information and discard irrelevant information over time.

It runs parallel to the hidden state and undergoes a series of operations

such as addition, multiplication, and modulation through gates (input
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Figure 3.6: LSTM Input Gate Layer Operation

gate, forget gate, and output gate) to regulate the flow of information.

The cell state serves as the primary component that captures the net-

work’s memory and plays a crucial role in retaining and updating in-

formation throughout the sequence processing in LSTM networks. It is

presented in Figure 3.7 and is captured by Equation (3.4).

(d) Phase 4:

In order to ensure that only essential information is outputted and saved

to the new hidden state, we apply a filter to the updated cell state.

However, before applying the filter, we subject the cell state to a tanh

function, which confines the values within the range of [-1, 1].

Here is the step-by-step process for this final step [52]:

• The current cell state is pointwise transformed using the tanh func-

tion, resulting in the squished cell state that now resides within the
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Figure 3.7: LSTM Cell State Operation

interval of [-1, 1].

• Both the previous hidden state and the current input data are passed

through a sigmoid-activated neural network, generating the filter vec-

tor.

• The squished cell state is then multiplied pointwise with the filter

vector obtained from the previous step.

• The resulting output becomes the new hidden state.

This process ensures that the outputted hidden state only contains perti-

nent information by applying the filter derived from the sigmoid network

to the transformed cell state.

This step is presented in Figure 3.8.

Why RNNs instead of another Model?

The concerned article mentioned that DL techniques gained popularity due to

their ability to detect computer network threats and abnormalities in various

applications and that an RNN model has shown to be effective in multiple
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Figure 3.8: LSTM Output Gate Operation

areas due to its better capability, so their realised model consists of an in-

put layer, output layer, and four recurrent, activation, normalization, activity

regularization and dropout layers.

However, there are frequent reports and articles stating that Tree-Based Mod-

els tend to achieve superior performance compared to Neural Networks.

2.3.2 Why do tree-based models still outperform deep learning on

tabular data?

In this article [53], 45 tabular datasets has been used to perform a compari-

son between various models. Those datasets has been selected depending on

different characteristics and differs on:

• Heterogeneous data.

• Real-world data.
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• Not deterministic.

The selected models are :

• Scikit Learn’s RandomForest.

• GradientBoostingTrees (GBTs) (or HistGradientBoostingTrees when us-

ing categorical features).

• XGBoost.

• MLP.

• Resnet.

Figure 3.9 represents the results on medium-sized datasets with only numerical

features. Dotted lines correspond to the score of the default hyperparameters.

Each value corresponds to the test score of the best model (on the validation

set) after a specific number of random search iterations, averaged on 15 shuffles

of the random search order. The ribbon corresponds to the minimum and

maximum scores on these 15 shuffles.

Figure 3.9: Results on medium-sized datasets with only numerical features
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And Figure 3.10 represents results on medium-sized datasets, with both nu-

merical and categorical features.

Figure 3.10: Results on medium-sized datasets, with both numerical and categorical
features

And it has been proven that tuning the hyperparameters does not make the

NNs perform better than tree-based model.

3 The use of Digital Twins for Resilience and

Prevention

3.1 Digital twins as run-time predictive models for the

resilience of cyber-physical systems: a conceptual frame-

work

The objective of the paper [54] is to propose a new approach for enhancing

the resilience of Cyber-Physical Systems (CPSs) by using DT as run-time pre-

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

70



dictive models.

CPSs are complex systems that intricate combinations of physical components

and digital technologies. They are increasingly utilized in critical domains such

as transportation, healthcare, and energy systems. However, these systems are

susceptible to disruptions and failures, which can result in severe consequences,

including safety hazards, financial losses, and damage to reputation.

Similar to IoT systems, which serve as our study case, disturbances, anoma-

lies, and interference pose significant challenges in handling time-series data

within various Information Technology (IT) and IoT systems. Given the enor-

mous volume of time-series data generated by multiple sensors daily, manual

anomaly detection by humans is no longer feasible.

Thus, the objective of the referenced article is to develop an approach that en-

hances the resilience of CPSs and facilitates their adaptation and recovery from

disruptions. Existing resilience strategies for CPSs primarily focus on reactive

measures such as detection systems and recovery. However, these measures

may not sufficiently address the growing complexity and unpredictability of

CPSs.

Existing approaches to CPSs resilience often focus on reactive measures such

as a detection system and recovery. However, these measures may not be

sufficient to address the increasing complexity and unpredictability of CPSs.

The authors argue that DT can provide a proactive, predictive approach to

enhancing CPSs resilience.

They can predict potential failures and recommend actions to prevent them,

thus enabling CPSs to anticipate and respond to disruptions more effectively.

Thoroughly, the objective of the paper is to propose a conceptual framework

for using DT as run-time predictive models to enhance the resilience of CPSs.
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The authors aim to demonstrate that this approach can significantly improve

the performance, safety, and reliability of CPSs, and can reduce downtime and

maintenance costs. The paper also aims to contribute to the field of CPSs by

highlighting the potential of DT as a tool for enhancing resilience and provid-

ing a framework for further research into their use in CPSs applications.

To adapt this paper to our specific problematic which is enhancing the re-

silience of IoT systems by using DT , here is what can be extracted :

• The paper highlights the importance of resilience in the context of CPSs

and argues that resilience is not just about recovering from disruptions,

but also about adapting to changing conditions and mitigating the impact

of disruptions.

This is particularly relevant for IoT systems, which are often subject to

a wide range of potential disruptions, such as network outages, cyber-

attacks, and environmental factors. By understanding the importance

of resilience, An effective approach to enhancing the resilience of an IoT

system can be developed.

• The paper proposes a conceptual framework for creating DT of CPSs and

using them as run-time predictive models. This approach can be applied

to IoT systems as well.

DT can help to predict and prevent disruptions in IoT systems, and

can provide a tool for testing and optimizing these systems in a virtual

environment. By considering the use of DT in an IoT system, its resilience

and performance improves.

• It has been suggested to explore the potential of DT for enhancing the

social and environmental sustainability of CPSs. This is equally relevant

for IoT systems, where sustainability is an increasingly important con-
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cern. For example, the DT may be used to optimize energy usage, reduce

waste, or improve the environmental impact of the IoT system.

3.2 Cognitive Digital Twins for Resilience in Production:

A Conceptual Framework

Similar to [54], The objective of this article [55] is to propose a framework to

enhance the resilience, but instead of CPS, it is for production systems using

cognitive DT.

Why production systems? Because they have become more intricate and inter-

dependent in recent times, making them susceptible to a range of disruptions

and uncertainties. To tackle these challenges, experts and researchers are ex-

ploring fresh approaches to boost the resilience of production systems. One

such approach involves using cognitive DT to improve the system’s ability to

withstand disruptions and uncertainties.

The article aims to explore the concept of cognitive DT, which are DT that

incorporate AI and ML to enhance their capabilities. These DT can provide

real-time feedback to operators, predict potential issues before they occur, and

optimize production processes.

Here is what this paper discussed and tried to attain as objectives:

• Discuss how cognitive DT can be used to improve production processes

and increase resilience. For example, DT can help identify potential issues

in the production process and provide recommendations for addressing

them, reducing the risk of disruptions.

• Explain how DT can help optimize the production process by simulating

different scenarios and identifying the most efficient production methods.

• Elucidate how Cognitive Digital Twin (CDT) presents several challenges,
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among them data privacy concerns, the need for significant computing

power, and the complexity of integrating DT into existing production

systems.

To give a solution to these problems and challenges, the goal is to provide

a roadmap for the development and deployment of CDT in production

systems. The roadmap includes several steps, such as identifying the Key

Performance Indicators (KPIs) that the DT will monitor, selecting the

appropriate AI and ML algorithms, and developing a data management

strategy.

• Provide a framework for using CDT to enhance the resilience of produc-

tion systems. By leveraging the power of AI and ML, CDT can help

production systems adapt to changing conditions, reduce the risk of dis-

ruptions, and improve overall efficiency and productivity.

3.3 State of the Art in using Digital Twins for prevention

• In [56], Koen Bruynseels, Filippo Santoni de Sio and Jeroen van den

Hoven used Digital Twins in healthcare to reflet the current state of

physical objects by redefining ’normality’ and ’health’ based on individ-

ual patterns compared to population patterns, impacting the distinction

between therapy and enhancement. The concept of Digital Twins is a

valuable tool for analyzing the ethical and conceptual aspects of future

healthcare and human enhancement by utilizing individualized data on

molecular makeup, physiology, lifestyle, and diet. Comparing Digital

Twins across populations helps differentiate between health and disease,

shaping the therapy-enhancement debate. Digital Twins have the poten-

tial to identify effective routes for therapy and enhancement, allowing

individuals to define their well-being preferences. However, ethical, legal,
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and social concerns arise, including challenges to equality and the risk of

discrimination based on compiled information. Governance is necessary

to ensure transparency, data privacy, and fair access to this data-intensive

technology.

• In [57], the authors presented the benefits of using digital twins in manu-

facturing Six core cognitive capabilities (perception, attention, memory,

reasoning, problem-solving, and learning) were described along with their

ability to influence complex manufacturing decisions and future auton-

omy.

• The research paper [58] presents a novel framework for anomaly detec-

tion in digital twin-based Cyber-Physical Systems (CPS). The frame-

work includes two main components: a discrepancy detector based on

the Gaussian Mixture Model (GMM), and an anomaly classifier utilizing

the Hidden Markov Model (HMM).

Initially, the discrepancy detector analyzes data from two sources: one

from the physical plant and the other from the digital twin. It assesses if

there are any anomalies present by comparing the data from both sources.

The generated signatures from this detector are then used by the anomaly

classifier to classify different types of anomalies, employing the HMM.

To validate the effectiveness of the framework, experiments were con-

ducted using the Tennessee Eastman process model.

In future endeavors, the researchers aim to enhance the framework by

integrating correction mechanisms. These mechanisms would be designed

to maintain system stability based on the classification results obtained

from the anomaly classifier.

• In the paper [59], a pioneering approach is introduced for constructing

a dynamic digital replica, or digital twin, of an additive manufacturing

system utilizing retrofitted low-end sensors found in IoT devices. By
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leveraging side-channels like acoustic, vibration, magnetic, and power

signals, the system can be indirectly monitored. These signals are then

processed using a clustering algorithm to generate a comprehensive fin-

gerprint library that accurately represents the physical state of the sys-

tem, essentially creating a physical twin in the digital realm. The digital

twin serves the purpose of detecting and pinpointing anomalous physical

emissions that may lead to variations in product quality.

With an average accuracy of 83.09%, the digital twin successfully localizes

errors by comparing the detected emissions to the established fingerprint

library. Furthermore, an algorithm is presented for updating the digital

twin and deducing any deviations in quality. To illustrate the effective-

ness of the methodology, a case study is conducted using an additive

manufacturing system.

In comparison to existing methods that disregard the liveliness of the

model, their created approach outperforms them by dynamically updat-

ing itself, accurately inferring quality deviations, and precisely localizing

abnormal faults within the additive manufacturing system.

4 Digital Twins architecture

The objective of the article "Towards a Requirement-driven Digital Twin Ar-

chitecture", as it is mentioned in its title, is to propose a new architecture for

DT that is driven by requirements. Since DT can be used to simulate, predict,

and optimize the behavior of the physical systems in real-time, its development

and realization of an architecture independently of the use case can be chal-

lenging especially due to the need for accurate data, modeling, and simulation.

To address these challenges, the authors propose a requirement-driven ap-
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proach to the design of DT architectures. This approach emphasizes the im-

portance of understanding and defining the requirements of the physical system

before developing the DT. The authors suggest that a set of requirements can

serve as the basis for the DT architecture, and that this architecture can be

designed to meet these requirements.

The provided comprehensive and practical approach to the development of DT

architectures that can be used to support a range of applications and industries

will be presented in the next subsection.

As mentioned, The paper proposes a conceptual framework for the develop-

ment and deployment of CDT in production systems. This framework provides

a systematic approach for integrating DT technology into production systems

and can help practitioners and researchers to implement DT in a systematic

and effective manner.

This conceptual framework is presented in Figure 3.11.
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Figure 3.11: Exemplary DT architecture.

5 Framework CSDT

Taking into consideration the following mentioned points:

• Level of granularity: System Twin.

• Use AI for Diagnostic and Predictive Analytics.

• The creation of a static DT.

By remaining faithful faithful to the above points, a CSDT can be created, this

term that is created to represent the framework that can not only replicate

the PT actions, what makes it a super-DT is its ability to generate disturbed

data and functions to make it more resilient to future problems rather waiting

for it to occur.
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5.1 Conclusion

In conclusion, this state-of-the-art analysis and different reviews on the present

articles has shed light on the power Digital Twins and Cognitive Digital Twins.

Through an exploration of definitions, current research, and practical applica-

tions, it is evident that Digital Twins offer significant benefits for resilience in

various domains.

Further experimental work will be emphasizing on :

• Create an Edge/Fog System of Sytems Architecture adapted to the prob-

lem and use-case presented.

• Use RNN for a classification problem.

• Prove that Decision Trees perfom better o tabular data.

• Create a Digital Twin adapted perfectly to the physical twin.

• Generate perturbations and anomalies to make it a super-DT.

Overall, this state-of-the-art analysis highlights the need for continued re-

search, innovation, and investment in Digital Twin technologies. With further

advancements and integration into real-world applications, Digital Twins have

the potential to revolutionize maintenance and resilience practices, leading

to improved operational efficiency, reduced downtime, and increased system

performance.
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Chapter 4
Design and Implementation
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1 Introduction

After leveraging and exploiting the state of the art that defined a Digital

Twin’s essential concepts, advanced methods and frameworks that used DTs

for detecting anomalies and disturbance, and the selection of an adapted model

going through both traditional machine learning algorithms and deep neural

networks. The main aim and objective of this study is to make a considerable

contribution in the field of Digital Twins by developing, implementing and

testing a Cognitive Digital Twin of an IoT system that not only is the perfect

replica of the Physical Twin but also generate disturbance to be dealt with

later on.

This chapter will be organized as follow:

• Describing the use case.

• Present the used technologies and hardware.

• Exhibiting the general architecture.

• Displaying and explaining the implementation.

2 Use Case

The use case followed to accomplish the wanted system is the following:

2.1 Description of the Use Case

The use case is Having an IoT system that corresponds to the Physical Twin

and that has four sensors:

(a) A temperature sensor.
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(b) A humidity sensor.

(c) A light sensor.

(d) A CO2 sensor.

Each sensor corresponds to a feature in the Occupancy Detection Data

Set taken from the website University of California, Irvine (UCI) Machine

Learning Repository1. The dataset is described in subsection 2.2.

At first hand, an adapted model is trained on that dataset so that the resulted

prediction would lead to future actions. The selection and training of the

adapted model is explained in subsection 5.3.

The Digital Twin would be the perfect replica of this Physical Twin but what

makes it a super-Digital Twin is the capacity of detecting disturbances.

2.2 Description of the used Dataset

The Occupancy Detection Data Set2 is an experimental data used for binary

classification (room occupancy) from Temperature,Humidity,Light and CO2.

Date time is given in the following form: year-month-day hour:minute:second

Temperature is in Celsius (°C) Relative Humidity is in percentage (%) Light

is in Lux CO2 is in ppm Humidity Ratio, Derived quantity from temperature

and relative humidity, in kgwater-vapor/kg-air Occupancy, 0 or 1, 0 for not

occupied, 1 for occupied status.

Mode details are given in Table 4.1.

1UCI Machine Learning Repository is a widely-used online collection of datasets for machine
learning research, maintained by the University of California, Irvine. It provides researchers and
practitioners with access to diverse datasets that have been preprocessed and formatted for use
in machine learning experiments. The repository promotes reproducibility, fair comparisons, and
knowledge sharing in the field of machine learning.

2Occupancy Detection Data Set: https://archive.ics.uci.edu/ml/datasets/
Occupancy+Detection+
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Dataset Char-
acteristics

Time-Series Number of In-
stances

20560

Attribute Char-
acteristics

Real Number of At-
tributes

7

Associated
Tasks

Classification Missing Values N/A

Table 4.1: The Description of the External Dataset (Occupancy Dataset).

3 Used Technologies and Hardware

Since it is a decentralised IoT system, different hardware and technologies used

for this system are presented in the upcoming subsections which are:

• Two Raspberry Pi 3 Model B.

• GrovePi+ add-on board.

• Grove sensors.

• Poppy Ergo Jr and its OS.

• RabbitMQ.

• MQTT.

• InfluxDB.

• Computer.

3.1 Raspberry Pi 3 Model B

The generation of Raspberry Pi used on this project is the Raspberry Pi 3

Model B. It is a single-board computer developed by the Raspberry Pi Foun-

dation. It is the third generation of the Raspberry Pi series, succeeding the

Raspberry Pi 2 Model B and the final revision of this third generation [60]. It

is presented in Figure 4.1
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Figure 4.1: Raspberry Pi 3 Model B

It has improved and has many new features compared to its predecessors. A

few of its notable The Raspberry Pi 3 Model B features several key components

and improvements compared to its predecessors. Few of its notable features

and specifications are mentioned in the subsubsection 3.1.1.

3.1.1 Features and Specifications

(a) Processor: it has a quad-core 64-bit ARM Cortex-A53 CPU running at

1.2 GHz.

(b) Memory: It has 1 GB of LPDDR2 RAM.

(c) Connectivity: The board includes built-in Wi-Fi 802.11n and Bluetooth

4.

(d) USB and Ethernet: it is composed of four USB 2.0 ports and a 10/100

Ethernet port.

(e) Video and Audio: it supports full HD (1080p) video playback and

includes an HDMI port for connecting to displays or TVs. It also features

a 3.5mm audio jack for audio output.
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3.1.2 Chosen OS

The chosen OS that has been flashed on a 16 GB SD Card is Raspbian "Rasp-

berry Pi OS with desktop and recommended software (32 bits)".

It is no surprise that Raspbian tops this list due to its importance to the

Raspberry community. Raspbian is an independent distro built for Raspberry

Pi 3. Its popularity is because it is one of the oldest operating systems to be

used with the earlier versions of the Raspberry Pi.

Raspbian is the chosen OS due to its importance to the Raspberry commu-

nity. It is an independent distribution built for Raspberries. Its popularity is

attributable to it being the oldest OS and that it was being used with earlier

versions of the Raspberry Pi.

In terms of build, Raspbian is based on Debian Linux and it comes with

approximately 35,000 packages in a bundle compatible with Raspberry Pi 3

[61].

3.2 GrovePi+

GrovePi+ is add-on board with 15 Grove 4-pin interfaces that brings Grove

sensors to the Raspberry Pi. It is very convenient to bring and connect various

Grove modules with a simple plug-and-play functionality [62].

It provides digital, analog, and I2C interfaces and is presented in Figure 4.2

3.3 Grove Sensors

The used grove sensors for this specific use case are:
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Figure 4.2: GrovePi+.

• Grove Temperature&Humidity Sensor (DHT11).

• Grove - Barometer (High-Accuracy).

• Grove - Light Sensor.

• Grove-VOC and eCO2 Gas Sensor(SGP30).

3.3.1 Grove Temperature&Humidity Sensor (DHT11)

The Temperature&Humidity sensor [63] provides a pre-calibrated digital out-

put. It has the following features:

• Relative Humidity and temperature measurement.

• Full range temperature compensation Calibrated.

• Digital signal.

• Long term stability.

• Long transmission distance(>20m).

• Low power consumption.

It is represented in Figure 4.3.
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Figure 4.3: Grove DHT11.

3.3.2 Grove - Barometer (High-Accuracy)

This Grove - Barometer (High-Accuracy) Sensor [64] features an HP206C high-

accuracy chip to detect barometric pressure, Altimeter, and temperature. It

can widely measure pressure ranging from 300mbar 1200mbar, with super high

accuracy of 0.01mbar(0.1m) in ultra-high resolution mode.

Its features are:

• Digital two wire (I2C) interface.

• Programmable Events and Interrupt Controls.

• Wide barometric pressure range.

• Flexible supply voltage range.

• Ultra-low power consumption.

• Altitude Resolution down to 0.01 meter.

• Temperature measurement included.

It is represented in Figure 4.4.

3.3.3 Grove - Light Sensor

The Grove - Light sensor integrates a photo-resistor(light dependent resistor)

to detect the intensity of light [65]. The resistance of photo-resistor decreases
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Figure 4.4: Grove - Barometer Sensor(High-Accuracy).

when the intensity of light increases. A dual OpAmp chip LM358 on board

produces voltage corresponding to intensity of light(i.e. based on resistance

value). The output signal is analog value, the brighter the light is, the larger

the value.

It is represented in Figure 4.5.

Figure 4.5: Grove - Light Sensor.

3.3.4 Grove-VOC and eCO2 Gas Sensor(SGP30)

The Grove-VOC and eCO2 Gas Sensor(SGP30) is an air quality detection

sensor [66]. This grove module is based on SGP30, we provide TVOC(Total

Volatile Organic Compounds) and CO2eq output for this module.

The SGP30 is a digital multi-pixel gas sensor designed for easy integration

into air purifier, demand-controlled ventilation, and IoT applications.
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It is represented in Figure 4.6.

Figure 4.6: Grove-VOC and eCO2 Gas Sensor(SGP30).

3.4 RabbitMQ - MQTT

3.4.1 RabbitMQ

RabbitMQ is an open-source message-broker software that provides a mes-

saging queue model for exchanging messages between different applications

or components within a distributed system [67]. It is built on the Advanced

Message Queuing Protocol (AMQP) standard, which allows applications to

communicate and transfer data reliably, asynchronously, and in a loosely cou-

pled manner.

RabbitMQ features are:

• Asynchronous Messaging.

• Distributed Deployment.

• Management and Monitoring.

3.4.2 RabbitMQ MQTT

RabbitMQ MQTT is an extension to RabbitMQ that enables support for the

Message Queuing Telemetry Transport (MQTT) protocol [68]. MQTT is a

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

91



lightweight messaging protocol designed for efficient communication between

devices or client applications in constrained or unreliable networks.

RabbitMQ MQTT allows devices or clients to connect to RabbitMQ as an

MQTT broker and exchange messages using the MQTT protocol. It provides

seamless integration between MQTT clients and the RabbitMQ messaging

system, enabling interoperability with other messaging protocols and systems

supported by RabbitMQ.

RabbitMQ MQTT extends the capabilities of RabbitMQ by adding MQTT-

specific features such as support for MQTT Quality of Service levels, retain

messages, last-will-and-testament messages, and session persistence for MQTT

clients.

By combining RabbitMQ’s robust messaging infrastructure with the MQTT

protocol, RabbitMQ MQTT provides a scalable and flexible solution for build-

ing IoT applications and other messaging systems that require lightweight,

efficient, and reliable communication.

3.4.3 Why RabbitMQ - MQTT and not another Message broker -

protocol ?

There are several reasons why RabbitMQ MQTT may be a suitable choice for

an IoT application among them:

• MQTT is lightweight, efficient and designed specifically for constrained

devices and unreliable networks.

• RabbitMQ is known for its scalability and ability to handle large numbers

of concurrent connections and messages.

• RabbitMQ MQTT integrates seamlessly with other messaging protocols

supported by RabbitMQ.
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• RabbitMQ MQTT leverages RabbitMQ’s robust messaging infrastruc-

ture, providing reliable message delivery, message persistence, and fault-

tolerance. It ensures that messages are not lost even in the case of network

or device failures.

• It supports topic-based message routing, allowing devices to subscribe

to specific topics of interest and receive relevant messages. Additionally,

RabbitMQ provides features like message filtering and transformation,

enabling data processing and transformation within the messaging system

itself.

3.5 InfluxDB

InfluxDB is an open-source time series database developed by the company

InfluxData[69]. It is written in the Go programming language for storage and

retrieval of time series data in fields such as operations monitoring, application

metrics, Internet of Things sensor data, and real-time analytics.

3.6 Poppy Ergo Jr

Ergo Jr is a low cost arm designed for education, easy to build and modify[70]

[71].

It is a robotic arm, consisting of 6 motors allowing life-like movements and

3D printed elements. The use of rivets make the assembly, modification and

reassembly easy. Ergo Jr comes with three tools for different interactions with

its environment:

• A lampshade.

• A gripper.

• A pen holder.
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The one used in our use case is a Gripper.

The robot is controlled with a Raspberry Pi board, and a camera helps it

interact with the world (which is not used in this use case).

3.7 Computer

The used computer is a DELL XPS 13 9305 running on Windows 10 and has

these specifications:

• Precessor: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz

• RAM: 16GO.

• System Type: 64-bit operating system, x64-based processor.

4 General Architecture

In this section, the general architecture of the realised system is presented in

the form of three levels of complexity:

• The system’s architecture in a simplified level.

• The system’s architecture in a detailed level.

• The system’s architecture in an elaborate level.

The architecture follows the structure given in [72] and the characteristics

given in [28] [37] [38] [39].

4.1 Simplified Architecture of the System

This subsection permits to view the architecture from an overarching stand-

point, allowing to evaluate the system from a comprehensive or broad perspec-

tive. It implies looking at the larger picture or taking into account the overall
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view or perspective rather than focusing on specific details. It suggests con-

sidering the subject matter or situation in a more holistic or all-encompassing

manner.

Figure 4.7 represents the simplified form of the architecture.

Figure 4.7: The system’s architecture in a simplified form.

4.1.1 Description of the Simplified Architecture

4.1.1.1 Physical Twin

The physical twin is in the form of a decentralised system.
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• The First sub-system: This first sub-system is in the form of an

Edge/Fog architecture due to Bandwidth efficiency, low-latency process-

ing and storage.

– PTEdge 1 - Sensors: This edge represents mainly the sensors. It

collects the sensor’s data and sends it to its fog for processing.

– PTFog: The corresponding fog accomplishes several functions among

them:

∗ Train a model using the dataset mentioned in subsection 2.2.

∗ use that trained model to make predictions on the received PT-

Edge 1 Data.

∗ Save the Sensor’s Data for future periodic trainings.

∗ Send the collected data and results to both communication medium

as well as the second Edge.

• PTEdge 2 - Poppy Ergo Jr: Poppy Ergo Jr has its own Operating

System that is why it is in a decentralised system. This robot and its

Operating System are better explained in subsection 3.6. The actions

and moves performed by the robot depends on the data and results it

received from the fog of the first sub-system.

4.1.1.2 Communication Medium

The medium serves as a tunnel, a channel or a pathway, through which every

interaction and communication occurring between the PT and its associated

DT is transported and securely stored. This ensures that all the data and

information passing through and exchanged between the two twins are seam-

lessly transmitted for further analysis, monitoring and synchronization.
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4.1.1.3 Digital Twin

The DT, the replica of the PT has different essential components, inspired

from [72] among them:

• Dataset Acquisition Module: since the origin of the data that the

DT processes comes from different sources, this module serves to collect

the data and process it to combine it and make it one global source of

data or dataset.

• Simulator: it is the core of the proposed DT which is a faithful replica-

tion of the PT’s functionality. But in this study, only the first sub-system

is being replicated. Additionally, the simulator generates and address cer-

tain types of disturbances to offer additional insights to support decision-

making, predicting anomalies or future failures.

4.2 Detailed Architecture of the System

This subsection permits to view the architecture in an in-depth manner, en-

abling a thorough evaluation of the system by examining specific details and

components and delving into finer aspects and intricacies of the architecture.

Figure 4.8 represents the detailed form of the architecture.
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Figure 4.8: The system’s architecture in a detailed form.
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4.2.1 Description of the Detailed Architecture

4.2.1.1 Physical Twin

• The First sub-system: This first sub-system is in the form of an

Edge/Fog architecture:

– PTEdge1 - Sensors: this edge consists of a Raspberry Pi 3 Model B

connected to it four types of sensors which are:

∗ Grove Temperature Sensor (Barometer).

∗ Grove Humidity Sensor (DHT11).

∗ Grove Light Sensor.

∗ Grove CO2 Sensor (SGP30).

The data collected from the environment using these sensors are sent

to the RabbitMQ broker located in the PTFog using MQTT protocol.

– PTFog: The PTFog receives the data sent by the PTEdge periodi-

cally and use them to be the input of the previously trained model

on the Occupancy dataset. When the class is predicted (either Oc-

cupied or not Occupied), the data and the prediction is sent to the

second sub-system and the Communication/Integration Medium us-

ing RabbitMQ and the same protocol (MQTT).

• The Second sub-system: this second edge is the OS of the poppy and

the poppy itself. When the data is received, The poppy performs different

actions depending on it, so that afterwards a decision-making process can

be made.

4.2.1.2 Communication Medium
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The communication or integration medium of a DT is typically a broker that

makes the communication between the PT and DT safer. It provides a bi-

directional communication and saves all the interactions between the the PT

and its different DT. In our use case, only one DT is created.

4.2.1.3 Digital Twin

• Dataset Acquisition Module: As explained, a DT receives data from

different sources, i this architecture, the different sources are shown which

are:

– The external dataset (Occupancy Dataset).

– The data sent from the PT.

– The data generated from the DT Simulator.

• The PT data is saved in an Individual InfluxDB dataset.

• Simulator: the core of the DT is in the form of an edge/fog to replicate

perfectly the functioning of the first PT sub-system.

– DTEdge 1 - VSensors: The DT Edge has virtual sensors that gen-

erates data similar to the PT’s as well as disturbances. Using Rab-

bitMQ MQTT, the generated data is sent to its corresponding Fog.

– DTFog: Similar to the PT Fog, it receives the data from its edge and

use it as an input to the model. What differs between the two models

is that the DT model is aware of the disturbances and the PT only

classifies the data as occupied and not occupied. This DTModel do a

multi-class classification and when the prediction is made, it is saved

in the individual InfluxDB database and global InfluxDB database.

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

100



4.3 Elaborated Architecture of the System

This subsection presents an expanded view of the architecture, offering a de-

tailed and extensive analysis of its components and functionality. It involves

a comprehensive exploration of the architecture’s intricate details, providing a

comprehensive understanding of its various aspects. It encompasses a meticu-

lous examination of each element, allowing for a comprehensive and nuanced

perspective on the subject matter or situation.

Figure 4.9 represents the elaborated form of the architecture.
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Figure 4.9: The system’s architecture in an elaborated form.
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4.3.1 Description of the Elaborated Architecture

4.3.1.1 Physical Twin

• The First sub-system: This first sub-system is in the form of an

Edge/Fog architecture:

– PTEdge1 - Sensors: this edge consists of a Raspberry Pi 3 Model

B connected to it a GrovePi+ add-on which is an adapter to the

four types of sensors. Figure 4.10 represents the interconnection of

everything together. The data collected from the environment using

these sensors are sent to the RabbitMQ broker located in the PT-

Fog using MQTT protocol with four different topics that have the

following routing keys "Sensors.Temperature", "Sensors.Humidity",

"Sensors.Light" and "Sensors.CO2".

– PTFog: The PTFog receives the data sent by the PTEdge periodi-

cally and use them to be the input of the previously trained model on

the Occupancy dataset at first. Meanwhile, the received data is saved

in a CSV file that is used later on to train a new, more preferment

model. When the class is predicted (either Occupied or not Occu-

pied), the data and the prediction is sent to the second sub-system

and the Communication/Integration Medium using RabbitMQ and

the same protocol (MQTT). The routing keys of the topics from

the PTFog to the second edge are: "Results.Temperature", "Re-

sults.Humidity", "Results.Light", "Results.CO2" and "Results.SelectedClass".
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Figure 4.10: The Physical Twin’s Edge Architecture.

• The Second sub-system: this second edge is the OS of the poppy and

the poppy itself. When the data is received, The poppy performs different

actions depending on it, so that afterwards a decision-making process can

be made. The actions are the following:

– When the room is occupied, the Heat Index (HI) is calculated, which

is a measure that combines temperature and relative humidity to

determine how hot it feels to the human body. The formula of the

HI is presented in equation 4.1.
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HI = c1 + c2 · T + c3 ·RH + c4 · T ·RH

+ c5 · T 2 + c6 ·RH2 + c7 · T 2 ·RH

+ c8 · T ·RH2 + c9 · T 2 ·RH2 (4.1)

where : (4.2)

HI is the Heat Index

T is the temperature in Celsius

RH is the relative humidity in percentage

c1, c2, . . . , c9 are the coefficients specific to the equation (4.3)

The Variables in 4.4 represent the commonly used coefficients.

c1 = −8.78469475556

c2 = 1.61139411

c3 = 2.33854883889

c4 = −0.14611605

c5 = −0.012308094

c6 = −0.0164248277778

c7 = 0.002211732

c8 = 0.00072546

c9 = −0.000003582 (4.4)

∗ If the HI calculated is too high, then the red cube is displaced.

The interpretation of this is "Open windows, Turn on the air-

conditioners and use cooling measures".

∗ If the HI is low, move green cube, its corresponding interpretation
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is Adapt the air-conditioning

– If the room is not occupied and the lights are ON then the yellow

cube is moved. The interpretation is "Turn the lights OFF".

Figure 4.11 visually depicts the physical appearance of the second sub-system.

Figure 4.11: The Physical Twin’s Edge Architecture.

4.3.1.2 Communication Medium

The communication or integration medium of a DT is typically a broker that

makes the communication between the PT and DT safer. It provides a bi-

directional communication and saves all the interactions between the the PT

and its different DT. In our use case, only one DT is created. the routing keys

of the topics are:

• Communication.Temperature
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• Communication.Humidity

• Communication.Light

• Communication.CO2

• Communication.SelClass

4.3.1.3 Digital Twin

• Dataset Acquisition Module: As explained, a DT receives data from

different sources, in this architecture, the different sources are shown

which are:

– The external dataset (Occupancy Dataset).

– The data sent from the PT.

– The data generated from the DT Simulator.

• The PT data is saved in an Individual InfluxDB dataset.

• The resulted global dataset is saved in a CSV file and that would be used

to train the DT model.

• Simulator: the core of the DT is in the form of an edge/fog to replicate

perfectly the functioning of the first PT sub-system.

– DTEdge 1 - VSensors: The DT Edge has virtual sensors that gen-

erates data similar to the PT’s as well as disturbances. Using Rab-

bitMQ MQTT, the generated data is sent to its corresponding Fog

with topics that has theese routing keys "DT.Temperature", "DT.Humidity",

"DT.CO2" and "DT.Light".

– DTFog: Similar to the PT Fog, it receives the data from its edge and

use it as an input to the model.to make predictions. At a certain

moment, the DT model replaces thePT model so that the PT would

be aware of the disturbances.
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5 Implementation

5.1 Class Diagram

The realised system is based on the class diagram represented in Figure 4.12.

It represents all the implemented classes used to run the system as well as

some classes that will be implemented.

5.1.1 Description of the Class Diagram

The model is composed of the following classes:

• Class "Component"

The approach of the class diagram is to follow a System of Systems (SoS)

Structure. A SoS is a collection of multiple, independent systems that are

part of a larger, more complex system [73]. The constituent systems pool

their resources and capabilities together to create a new, more complex

system that offers more functionality and performance than simply the

sum of the constituent systems [74]. SoSes enable the creation and op-

eration of large and complex systems like the IoT system we are dealing

with. The class "Component" presented in Figure 4.13 is at the head

of the class diagram because everything is a component going from a

complex to a simpler class.

It has the attributes "credentials", "broker", "port" that would be shared

over the other classes and an operation "runComponent()" that would

overridden by other classes.

Two classes inherit from it:

– Class "PhysicalTwin".

– Class "DigitalTwin".
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Figure 4.12: The System’s Architecture in the Form of a Class Diagram
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Figure 4.13: Class "Component".

• Class "Physical Twin"

This class, represented in Figure 4.14, is inherited from the class pre-

sented previously, class "Component" and overrides the runCompo-

nent() function. It is composed of two class:

– Class "PTEdge".

– Class "PTFog".

It can be composed of one to several PTEdge and one to several PTFog.

The class "Physical Twin" is composed of itself referring to the SoS prin-

ciple.

Figure 4.14: Class "Physical Twin".

• Class "PTEdge"

This class (Figure 4.15)is one of the compositions of the "physical twin"

class, it represents the hardware of the system and has an operation
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"startSensor()" to start the sensors, that is why it has a relation of com-

position with these two classes:

– Class "Sensor".

– Class "PoppyErgoJr".

It can be composed of several sensors. But it is composed of only one

Robot Poppy Ergo Jr.

Figure 4.15: Class "Physical Twin’s Edge".

• Class "Sensor"

This class represents all the sensors of the used use case. Figure 4.16

showcases it and four classes inherit from it:

– Temperature Sensor.

– Humidity Sensor.

– Light Sensor.

– CO2 Sensor.

Figure 4.16: Class "Physical Twin’s Sensor".
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• Class "Temperature Sensor"

The class "Temperature" (Figure 4.17) represents the Barometer sensor,

even though the other used sensor which is DHT11 sensor collects the

humidity as well as the temperature, another sensor is used to prove that

the created simulator is extensible.

the Temperature class has an operation "runBarometer()" that collects

the temperature of the environment and put the value in its float attribute

temperature.

Figure 4.17: Class "Temperature Sensor".

• Class "Humidity Sensor"

Similar to the Temperature class, Figure 4.18 shows that the Humidity

class has an operation "runDHT11()" that collects the humidity of the

environment and put the value in its float attribute humidity.

Figure 4.18: Class "Humidity Sensor".

• Class "Light Sensor"
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Resembling the two previous classes, this class Light (Figure 4.19) has an

operation "runPhotoResistor()" that captures the light in Lux and saves

the value in its corresponding attribute "light".

Figure 4.19: Class "Light Sensor".

• Class "CO2 Sensor"

This class, presented in Figure 4.20 has an attribute co2 that gets its

value from the runGPS30() operation. runGPS30 runs the sensor and

collect the corresponding value and saves it.

Figure 4.20: Class "CO2 Sensor".

• Class "PoppyErgoJr"

The "PoppyErgoJr" class represents the Robot arm named Poppy Ergo

Jr (Figure 4.21). It has an operation "startPoppy()" that starts the robot

and make actions depending on the data it receives periodically from the

fog.
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Figure 4.21: Class "Poppy Ergo Jr".

• Class "CommunicationPTEdgePTFog"

This class serves as a communication medium. It is shown in Figure 4.22

which shows that it has a function "runCommunication()". This opera-

tion sends the data collected by the edge (PTedge and its sensors) to the

fog (class "PTFog") for processing.

Figure 4.22: Class "Poppy Ergo Jr".

• Class "PTFog"

Figure 4.23 represents the PTFog class. It has a function "startPTFog()"

that permits to receive the data from the "CommunicationPTEdgePT-

Fog" class. After receiving those data, a model is trained and those same

data are sent to the "CommunicationMedium" class.

The "PTFog" receives the generated data of the Digital twin as well.

• Class "PTModel"

This class (Figure 4.24) represents the model trained in the PTFog, and

that would be used by the "PoppyErgoJr" class.
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Figure 4.23: Class "PTFog".

Figure 4.24: Class "PTModel".

• Class "CommunicationMedium"

This class (Figure 4.25, permits the bidirectional communication between

the Physical Twin and Digital Twin by sending and receiving their cor-

responding data.

Figure 4.25: Class "CommunicationMedium".

• Class "Digital Twin"

This class, represented in Figure 4.26, is inherited from the class "Com-

ponent" and overrides the runComponent() function. It is composed of
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two class:

– Class "DataAcquisition".

– Class "Simulation".

Figure 4.26: Class "Digital Twin".

• Class "DatasetAcquisition"

The datasetAcquisition class represented in Figure 4.27 is a composition

of the Digital Twin class and handle different sources of the Digital Twin

which are its attributes:

– PTData.

– dataset.

– perturbationData.

It communicates with the class "Simulation".

Figure 4.27: Class "DatasetAcquisition".

• Class "Simulation"
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The class "Simulation" (Figure 4.28) is the head of the module that

replicates the Physical Twin’s functioning.

It receives the accumulated data from several sources received from the

DatasetAcquisition module and reads the configuration file that has def-

initions of sensors which are both its attributes.

It is composed of these two classes:

– DTEdge.

– DTFog.

It can have on to several DTEdge and DTFogs.

Figure 4.28: Class "Simulation".

• Class "DTEdge"

Figure 4.29 portrays the class "DTEdge", it is the replica of the PTEdge

and has two operations:

– Operation "runDTEdgePerturbation()": this function generates only

disturbances and saves it in a CSV file.

– Operation "runDTEdgeMixe()": this function generates sensor’s data

some that are altered and others that are not.

This class has a relation of composition with "DTSensor" class. It can

be composed of several sensors.

• Class "DTSensor"
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Figure 4.29: Class "DTEdge".

To represent the digital version of a Sensor, many attributes has been

given to the class DTSensor, as shown in Figure 4.30, this class has the

following attributes:

– name.

– measurement.

– unit.

– dataInterval.

– secondsBetweenTwoMessages.

– SendingRoutingKey so that the runSensor method knows to which

queue the message will be sent.

Figure 4.30: Class "DTSensor".

• Class "DTFog"
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The class "DTFog" represented in Figure 4.31 has the same functionalities

as the class "PTFog".

It trains a model using the Golden Standard Dataset.

Figure 4.31: Class "DTFog".

• Class "DTModel"

Figure 4.32 represent the class "DTModel" that has the trained model,

this model is considered to be the golden standard of this work.

Figure 4.32: Class "DTModel".

• Class "Perturbation"

The abstract class "Perturbation) (Figure 4.33 has several childen that

are:

– Class "EdgePerturbation".

– Class "FogPerturbation".

– Class "CommunicationMediumPerturbation".

– Class "QueuePerturbation".

The type of disturbance that has been implemented is "EdgePerturba-

tion".
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Figure 4.33: Class "Perturbation".

• Class "Edge Perturbation"

Figure 4.34 represents the class "Edge Perturbation" and its children

which are:

– AlterDataPerturbation.

– DeleteDataPerturbation.

– TemporarySensorStop.

DeleteDataPerturbation class deletes the generated values, AlterData-

Perturbation class changes the the generated values and TemporarySen-

sorStop stops the sensor temporarily.

Figure 4.34: Classes of Edge Perturbation".

5.2 Creating a Dataset

As mentioned, the DT is trained on three different sources:

• the PT collected data.
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• the external dataset.

• the altered and disturbed data generated by DT.

In this subsection, the external dataset and the created combined dataset are

about to be analyzed.

5.2.1 The External Dataset

As presented previously, This external dataset represents data collected in a

room (Temperature, Humidity, Light, CO2) in the range of approximately two

weeks (from 03-02-2015 to 19-02-2015).

As shown in Figure 4.35 that represents a time series plot where the occupancy

status can be visualized over time, the data has been collected when the room

is occupied and when it is not to make a good distribution over time.

Figure 4.35: External Dataset - Time Series Plot
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Figure 4.40 represents a correlation matrix that shows the relationships be-

tween different features which are the sensors.

Figure 4.36: External Dataset - Correlation Matrix

By examining the correlation coefficients, what can be identified is that the

Light variable is strongly correlated with occupancy.

Now, each feature is analysed individually.

• Histogram Temperature Plot: in this diagram, the distribution of

the Temperature sensor is displayed for occupied and unoccupied states.

As it can be seen, there is a distinct pattern and few overlappings.
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Figure 4.37: External Dataset - Temperature Histogram Plot

• Histogram Humidity Plot: There is more overlapping than distinction

in the Humidity Histogram diagram.

Figure 4.38: External Dataset - Humidity Histogram Plot

• Histogram Light Plot: The distinction is clear.
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Figure 4.39: External Dataset - Light Histogram Plot

• Histogram CO2 Plot:

Figure 4.40: External Dataset - CO2 Histogram Plot

In general, the external dataset has a coherent distribution.
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5.2.2 The Global Dataset

This global dataset represent the concatenation and combination of the three

different sources (the external dataset "Occupancy Detection", PT’s collected

data, the disturbance generated by the DT).

The PT data has been collected in one day considered as the perfect day to

collect the data. And as it can be seen in the graphs presented in Figure 4.41,

which represent different histogram graphs of each feature/sensor, the global

distribution is acceptable and it would not confuse the future trained model.

Figure 4.41: Global Dataset - Histogram Plots
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5.3 Selecting an ML or DL Models

In this section, an adapted model would be trained for the PT and the DT, to

find out which model among the ML and DL models is the most performing,

different models have been trained which are:

• Decision Trees.

• Random Forests.

• KNN.

• Naive Bayes.

• RNN.

• MLP.

☞ Note: The selection of the most performing hyper-parameters is done either

with GridSearch3 or RandomSearch4

5.3.1 The Physical Twin’s Model

The PT’s model goes through two steps:

• Select a model trained on the external dataset (Occupancy Detection

Dataset), and test it on the data captured via the sensors which does not

detect disturbances.

• Replace the model with a trained model in the DT so that it would give

better results and acknowledge the disturbance.

Six different models have been trained on the external dataset and the results

have been summarized in Figure 4.42.
3Grid search is a method for performing hyper-parameter optimization, which is used to find

the optimal hyper-parameters of a model that results in the most accurate predictions
4Random search is a hyper-parameter optimization technique that involves selecting random

combinations of hyper-parameters to train a model
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As it can be seen, the F1 score of these models are quite close, that is why in

the next subsections a few plots are presented.

Figure 4.42: PT trained models on the external dataset

5.3.1.1 Decision Tree

The resulted decision tree is presented in Figure 4.43. and as shown in Fig-

ure 4.44, this model depends highly on the Light feature. It gave the following

results:

• Accuracy: 99.14%

• Precision: 97.73%

• Recall: 98.47%

• F1 Score: 98.10%
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Figure 4.43: The resulted Decision Tree trained on the external dataset

Figure 4.44: Feature Importance Plot - Decision Tree trained on the external dataset
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5.3.1.2 Random Forests

Similar to the Decision Tree model and as it can be seen in Figure 4.45 that

represents the feature importance plot, the light has a huge importance. How-

ever, it does give more importance to the Temperature and CO2 features.

It gave the following results, which are better than the Decision Tree Model:

• Accuracy: 99.34%

• Precision: 97.85%

• Recall: 99.23%

• F1 Score: 98.54%

Figure 4.45: Feature Importance Plot - Random Forest trained on the external
dataset
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5.3.1.3 KNN

The RandomGridSearch selected the number of neighbors K to be "7" and

the why is explained in Figure 4.46, which show that seven neighbors has the

lowest error rate.

Figure 4.46: Error Rate vs Number of Neighbors (K)

In Figure 4.47, a corresponding Confusion Matrix is represented where the

classifications can be seen:

• 3172 instances which are part of the class "Not Occupied" are correctly

classified (True Negative TN).

• 20 instances which are part of the class "Occupied" are correctly classified

(True Positive TP).

• 912 instances which are part of the class "Not Occupied" but are classified

as "Occupied" (False Negative FN).
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• 8 instances which are part of the class "Occupied" but are classified as

"Not Occupied" (False Positive FP).

Figure 4.47: Confusion Matrix - KNN trained on the external dataset

It gave the following results, which are quite similar to the Random Forest

Model:

• Accuracy: 99.31%

• Precision: 97.85%

• Recall: 99.13%

• F1 Score: 98.48%

5.3.1.4 Naive Bayes
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The first plot represented in Figure 4.48 shows Precision-Recall curves. It

summarizes the trade-off between the TP rate and the positive predictive

value.

Figure 4.48: Precision-Recall Curve - Naive Bayes trained on the external dataset

Figure 4.49 is the confusion matrix of this model:

• 3071 instances which are part of the class "Not Occupied" are correctly

classified (True Negative TN).

• 919 instances which are part of the class "Occupied" are correctly classi-

fied (True Positive TP).

• 121 instances which are part of the class "Not Occupied" but are classified

as "Occupied" (False Negative FN).

• One instance which is part of the class "Occupied" but is classified as

"Not Occupied" (False Positive FP).
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Figure 4.49: Confusion Matrix - Naive Bayes trained on the external dataset

It gave the following results, which are far less performing that the previously

viewed models:

• Accuracy: 97.03%

• Precision: 98.36%

• Recall: 99.89%

• F1 Score: 93.77%

5.3.1.5 MLP

The Figure 4.50, it can be seen the higher the iterations, the better the result

is. and its confusion matrix in Figure 4.51 gives theses values:
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Figure 4.50: Loss Curve - MLP trained on the external dataset

Figure 4.51: Confusion Matrix - MLP trained on the external dataset

• 3166 instances which are part of the class "Not Occupied" are correctly

classified (True Negative TN).
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• 917 instances which are part of the class "Occupied" are correctly classi-

fied (True Positive TP).

• 26 instances which are part of the class "Not Occupied" but are classified

as "Occupied" (False Negative FN).

• 3 instances which are part of the class "Occupied" but are classified as

"Not Occupied" (False Positive FP).

It gave the following results:

• Accuracy: 99.27%

• Precision: 97.34%

• Recall: 99.46%

• F1 Score: 98.39%

5.3.1.6 RNN

As seen in Figure 4.52, the best epochs iteration is 8 epochs. And the classi-

fication shown in the confusion matrix of Figure 4.53 are the following:

• 3132 instances which are part of the class "Not Occupied" are correctly

classified (True Negative TN).

• 945 instances which are part of the class "Occupied" are correctly classi-

fied (True Positive TP).

• 30 instances which are part of the class "Not Occupied" but are classified

as "Occupied" (False Negative FN).
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Figure 4.52: Feature Importance Plot - Decision Tree trained on the external dataset

Figure 4.53: Confusion Matrix - RNN trained on the external dataset

• 5 instances which are part of the class "Occupied" but are classified as

"Not Occupied" (False Positive FP).

It gave the following results:
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• Accuracy: 99.51%

• Precision: 97.38%

• Recall: 99.81%

• F1 Score: 98.09%

5.3.1.7 The PT Model selection

The selected model is the RNN due to its performance on the dataset and the

fact that it is a type of DL models that is well-suited for time series data. As

mentioned, it retains a memory of what it has already processed and can learn

from previous iterations during its training.

Figure 4.54 shows the trained model which has the following characteristics:

• LSTM Parameters:

– Unit: The number of LSTM units or cells in the layer is set to 64.

– input_shape: The shape of the input data for the LSTM layer is set

to (1, n_feature), where n_feature is the number of features in this

case five features (Timestamp, Temperature, Humidity, Light, CO2).

• Model Training Parameters:

– optimizer: The optimizer used to update the weights during training

is set to ’rmsprop’.

– num_dense_layers: The number of dense layers after the LSTM

layer are set to 4.

– dropout_rate: The dropout rate, which is the fraction of the input

units to drop during training is set to 0.1.

– dense_units: The number of units/neurons in each dense layer is set

to 16.
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Figure 4.54: Physical Twin’s Selected Model
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– activation: The activation function used in the dense layers is set to

’sigmoid’.

– epochs: The number of times the model is trained on the entire

training dataset is 10 iterations.

– batch_size: The number of samples propagated through the network

before the weights are updated is set to 32.

5.3.2 The Digital Twin’s Model

The DT’s model can be trained over the three sources of data and tested over

the generated. As mentioned, the three sources are:

• The external dataset (Occupancy Dataset).

• The data sent from the PT.

• The data generated from the DT Simulator. The data is generated via a

JavaScript Object Notation (JSON) file that describes the used sensors,

this is the file which make the simulator expandable. The description of

one of the sensors is presented in Figure 4.55.

Similar to the PT model, Six models have been trained on the global dataset:

• Decision Tree.

• Random Forest.

• KNN.

• Naive Bayes.

• Neural Networks.

– RNN.
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Figure 4.55: Description of the Temperature Sensor in the Digital Twin

– MLP.

The results have been resumed in Figure 4.56

Only well performing models will be discussed in the upcoming subsections.
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Figure 4.56: DT trained models on the global dataset

5.3.2.1 Decision Tree

The model gave very performing results and is presented in Figure 4.57.

And similar to the Occupancy Detection Dataset, the Light feature has a

bigger importance than other features (Figure 4.58).

As shown in Figure 4.59, the binary problem became a multi-class problem

and it has most of the classifications correct:

• 4194 instances which are part of the class "Not Occupied" are correctly

classified.

• Only 7 instances which are part of the class "Not Occupied" are wrongly

classified as "Occupied".

• No instances which are part of the class "Not Occupied" are wrongly

classified as "disturbance".
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Figure 4.57: Decision Tree trained on the global dataset

• 1732 instances which are part of the class "Occupied" are correctly clas-

sified.

• 36 instances which are part of the class "Occupied" are wrongly classified

as "Not Occupied".

• 3 instances are part of the class "Occupied" are correctly classified.

• 36 instances which are part of the class "Occupied" are wrongly classified

as "disturbance".

• 338 instances which are part of the class "disturbance" are correctly clas-

sified.
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Figure 4.58: Feature Importance - Decision Tree trained on the global dataset

Figure 4.59: Confusion Matrix - Decision Tree trained on the global dataset

• No instances which are part of the class "disturbance" are wrongly clas-

sified as "Occupied".

• No instances which are part of the class "disturbance" are wrongly clas-
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sified as "Not Occupied".

The scores resulted are the following:

• Accuracy: 99.27%

• Precision: 99.28%

• Recall: 99.27%

• F1_Score: 99.27%

5.3.2.2 Random Forest

The random forest model performed similarly to the decision tree and gave

performing results.

It gave importance to the Light feature (Figure 4.60

The scores resulted are the following:

• Accuracy: 99.38%

• Precision: 99.39%

• Recall: 99.38%

• F1_Score: 99.38%

5.3.2.3 KNN

In Figure 4.61, different Number of Neighbors (K) are presented and each has

a different error rate.
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Figure 4.60: Feature Importance - Random Forest trained on the global dataset

And Figure 4.62 represents the Confusion Matrix which showcases the follow-

ing results:

• 4225 instances which are part of the class "Not Occupied" are correctly

classified.

• 21 instances which are part of the class "Not Occupied" are wrongly

classified as "Occupied".

• 2 instances which are part of the class "Not Occupied" are wrongly clas-

sified as "disturbance".

• 1722 instances which are part of the class "Occupied" are correctly clas-

sified.

• 23 instances which are part of the class "Occupied" are wrongly classified
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Figure 4.61: Number of Neighbors - Decision Tree trained on the global dataset

as "Not Occupied".

• 3 instances are part of the class "Occupied" are correctly classified.

• 313 instances which are part of the class "disturbance" are correctly clas-

sified.

• No instances which are part of the class "disturbance" are wrongly clas-

sified as "Occupied".

• Only One instance that is part of the class "disturbance" is wrongly

classified as "Not Occupied".

The scores resulted are the following:

• Accuracy: 99.20%

• Precision: 99.20%

• Recall: 99.20%
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Figure 4.62: Confusion Matrix - KNN trained on the global dataset

• F1_Score: 99.20%

5.3.2.4 The DT Model Selection

Two choices are proposed here:

• Either pick the RNN model similar to the PT which is a model that takes

into consideration the date yet it is not as performing as other models.

• Pick a model that is well performing and give well predictions mostly

(Random Forest or Decision Tree) but i does not take into consideration

the timestamp.

The model selected is the Decision Tree Model due to its performance on

tabular data and the results it gave.
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5.4 Languages and Libraries

• Languages

– Python: a strong, high-level, general-purpose multi-platform pro-

gramming language that is widely used in various purposes (AI, web

development, etc).

• Libraries

– Paho Library: an open-source MQTT client library that provides

implementations in various programming languages, it allows the

creation of MQTT clients and interact with MQTT brokers. The

"paho.mqtt.publish" is used to publish messages to the MQTT bro-

ker and "paho.mqtt.client" is to subscribe to topics to receive the

sent messages.

– Influxdb Library: a Python client library that allows the interation

with the InfluxDB time-series database.

– hp206c Library: provides a way of interaction with the HP206C

sensor which is the barometer in the followed use case.

– Grovepi Library: allow the interaction with the GrovePi+ board

which means the interaction with any grove component (sensors, ac-

tuators etc.)

– Threading Library: create and manage threads.

– Pandas Library: a powerful open-source Python library used for

data manipulation, analysis, and exploration. It provides data struc-

tures and functions to efficiently handle and process structured data

– Numpy Library: manipulates matrices and performs mathematical

operation.

– Matplotlib.pyplot: to create plots and visualisation graphs.
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– Seaborn: data visualization library built on top of matplotlib.

– Jupyter Notebook: an open-source web application that let the

execution of sub-parts of Python code on one kernel and allows to

create and share documents that combine live code and visualiza-

tions;
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Chapter 5
Demonstration
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1 The Physical Twin

The physical twin is composed of two sub-systems:

• The first sub-system: it consists of the system that collects the en-

vironmental data then use its corresponding model to make predictions.

The results are sent to the second sub-system.

• The second sub-system: this second sub-system is the Poppy Ergo

Jr and its OS. It receives the results from the first sub-system, and the

robot moves accordingly.

1.1 The first sub-system

The first subsystem is in the form of an Edge/Fog.

1.1.1 The first sub-system edge

As it can be seen in Figure 5.1, The edge is collecting the data (Temperature,

Humidity, Light, CO2) and sending it directly to the fog.

1.1.2 The first sub-system fog

As the demonstration in Figure 5.2 shows, the fog receives the collected data

from the fog and proceeds to use it as an input to the corresponding model.

At the end, the data and the result of the model are sent to the second edge

of Poppy Ergo Jr.

“The Use of Cognitive Digital Twins on an IoT System for Edge Resilience and
Anomaly Detection” Engineering Thesis

151



Figure 5.1: Demonstration - PTEdge

Figure 5.2: Demonstration - PTFog

1.2 The second sub-system

Figure 5.3 represents a web interface screenshot of the Poppy Ergo Jr OS . It

showcases that the Poppy Ergo Jr do receive the data from the first sub-system

fog and move accordingly.
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Figure 5.3: Demonstration - Poppy Ergo Jr

2 The Digital Twin

The Digital Twin is the replica of the first sub-system only since in the level

of granularity, it is a system twin. Therefore, the Digital Twin is in the form

of an Edge and a Fog (Figure 5.4)

Figure 5.4: Demonstration - Digital Twin

• The DT Edge receives data from the PT and generate similar data de-

pending on a configuration file, as well as disturbance. It then sends those
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data to its fog.

• The fog receives the data from the DT edge and use it as an input to the

corresponding model.
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Part V

Prospective Endeavors and

Synopsis
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Chapter 6
Future Work

In this chapter, potential avenues for further exploration, development, and

expansion of the current work are outlined.

The improvements, advancements and additional studies that will be under-

taken to enhance the existing work are the following:

• Change the type of the used DT from a static twin to a dynamic one

where data and responses are done in real-time.

• Change the level of granularity from a system twin to a process twin.

• Develop the use case and include reinforcement learning.

• Find a solution to include different environments in the use case to not

have the problem of different distributed data.

• Add a cloud layer to upgrade the architecture to an Edge/Fog/Cloud and

deal with big data.
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Part VI

General Conclusion
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Chapter 7
General Conclusion

In this Engineering degree report, an exploration of the power and potential of

Digital Twins as a preventative and resilience tool was presented, along with

relevant definitions and a comprehensive state-of-the-art analysis. However, it

is crucial to acknowledge that while Digital Twins offer numerous benefits, they

are not a one-size-fits-all solution for all maintenance and resilience challenges.

Implementing Digital Twins requires significant investments in terms of data

collection, analytic capabilities, computing power, and the recruitment and

training of skilled personnel. These resources are necessary for ensuring the

proper operation and maintenance of Digital Twins. It is also important to

note that while Digital Twins can provide valuable insights and analysis, they

cannot entirely replace human intuition and expertise in decision-making pro-

cesses. Instead, they should be viewed as a complementary tool that enhances

and augments traditional maintenance practices.

That is why a cognitive super-Digital Twin has been implemented by testing

different Machine Learning and Deep Learning methods and led to the creation

of an advanced advanced version of the Digital Twin concept which not only
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replicates the physical IoT Twin with precision but also possesses the unique

capability to detect and generate perturbations for enhanced prevention and

resilience strategies. By introducing controlled disruptions and analyzing their

impact, the super-Digital Twin aims to improve the overall performance and

preparedness of systems.
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